基于外输入非线性自回归神经网络的集中太阳能热发电系统平准化能源成本建模

Pub Date : 2021-10-01 DOI:10.4018/ijeoe.2021100101
N. Filippchenkova
{"title":"基于外输入非线性自回归神经网络的集中太阳能热发电系统平准化能源成本建模","authors":"N. Filippchenkova","doi":"10.4018/ijeoe.2021100101","DOIUrl":null,"url":null,"abstract":"This article presents the results of the development of a mathematical model for predicting the levelized cost of energy (LCOE) for solar concentrating thermal power systems (CSP systems) based on a nonlinear autoregressive neural network with exogenous inputs (NARX). A two-layer NARX network with sigmoid hidden neurons and linear output neurons has been developed. The input layer is made up of the following variables: the volume of input power of CSP systems in the world, the total world energy consumption, domestic energy consumption, domestic gas consumption, domestic consumption of coal and lignite, domestic energy consumption, the share of renewable energy in electricity generation, the share of wind and solar energy in the production of electricity, carbon dioxide emissions from fuel combustion, the price of Brent oil against the US dollar, and the average price for natural gas auctions. The output layer specifies LCOE values for CSP systems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Levelized Cost of Energy for Concentrating Solar Thermal Power Systems Based on a Nonlinear AutoRegressive Neural Network With Exogenous Inputs\",\"authors\":\"N. Filippchenkova\",\"doi\":\"10.4018/ijeoe.2021100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the results of the development of a mathematical model for predicting the levelized cost of energy (LCOE) for solar concentrating thermal power systems (CSP systems) based on a nonlinear autoregressive neural network with exogenous inputs (NARX). A two-layer NARX network with sigmoid hidden neurons and linear output neurons has been developed. The input layer is made up of the following variables: the volume of input power of CSP systems in the world, the total world energy consumption, domestic energy consumption, domestic gas consumption, domestic consumption of coal and lignite, domestic energy consumption, the share of renewable energy in electricity generation, the share of wind and solar energy in the production of electricity, carbon dioxide emissions from fuel combustion, the price of Brent oil against the US dollar, and the average price for natural gas auctions. The output layer specifies LCOE values for CSP systems.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijeoe.2021100101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijeoe.2021100101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了基于外生输入非线性自回归神经网络(NARX)的太阳能聚光热发电系统(CSP系统)平准化能源成本(LCOE)数学模型的发展结果。提出了一种具有s型隐神经元和线性输出神经元的双层NARX网络。输入层由以下变量组成:世界光热发电系统的输入功率、世界总能源消耗、国内能源消耗、国内天然气消耗、国内煤和褐煤消耗、国内能源消耗、可再生能源在发电中的份额、风能和太阳能在发电中的份额、燃料燃烧产生的二氧化碳排放量、布伦特原油对美元的价格、天然气拍卖的平均价格。输出层为CSP系统指定LCOE值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Modeling the Levelized Cost of Energy for Concentrating Solar Thermal Power Systems Based on a Nonlinear AutoRegressive Neural Network With Exogenous Inputs
This article presents the results of the development of a mathematical model for predicting the levelized cost of energy (LCOE) for solar concentrating thermal power systems (CSP systems) based on a nonlinear autoregressive neural network with exogenous inputs (NARX). A two-layer NARX network with sigmoid hidden neurons and linear output neurons has been developed. The input layer is made up of the following variables: the volume of input power of CSP systems in the world, the total world energy consumption, domestic energy consumption, domestic gas consumption, domestic consumption of coal and lignite, domestic energy consumption, the share of renewable energy in electricity generation, the share of wind and solar energy in the production of electricity, carbon dioxide emissions from fuel combustion, the price of Brent oil against the US dollar, and the average price for natural gas auctions. The output layer specifies LCOE values for CSP systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1