{"title":"基于外输入非线性自回归神经网络的集中太阳能热发电系统平准化能源成本建模","authors":"N. Filippchenkova","doi":"10.4018/ijeoe.2021100101","DOIUrl":null,"url":null,"abstract":"This article presents the results of the development of a mathematical model for predicting the levelized cost of energy (LCOE) for solar concentrating thermal power systems (CSP systems) based on a nonlinear autoregressive neural network with exogenous inputs (NARX). A two-layer NARX network with sigmoid hidden neurons and linear output neurons has been developed. The input layer is made up of the following variables: the volume of input power of CSP systems in the world, the total world energy consumption, domestic energy consumption, domestic gas consumption, domestic consumption of coal and lignite, domestic energy consumption, the share of renewable energy in electricity generation, the share of wind and solar energy in the production of electricity, carbon dioxide emissions from fuel combustion, the price of Brent oil against the US dollar, and the average price for natural gas auctions. The output layer specifies LCOE values for CSP systems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Levelized Cost of Energy for Concentrating Solar Thermal Power Systems Based on a Nonlinear AutoRegressive Neural Network With Exogenous Inputs\",\"authors\":\"N. Filippchenkova\",\"doi\":\"10.4018/ijeoe.2021100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the results of the development of a mathematical model for predicting the levelized cost of energy (LCOE) for solar concentrating thermal power systems (CSP systems) based on a nonlinear autoregressive neural network with exogenous inputs (NARX). A two-layer NARX network with sigmoid hidden neurons and linear output neurons has been developed. The input layer is made up of the following variables: the volume of input power of CSP systems in the world, the total world energy consumption, domestic energy consumption, domestic gas consumption, domestic consumption of coal and lignite, domestic energy consumption, the share of renewable energy in electricity generation, the share of wind and solar energy in the production of electricity, carbon dioxide emissions from fuel combustion, the price of Brent oil against the US dollar, and the average price for natural gas auctions. The output layer specifies LCOE values for CSP systems.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijeoe.2021100101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijeoe.2021100101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling the Levelized Cost of Energy for Concentrating Solar Thermal Power Systems Based on a Nonlinear AutoRegressive Neural Network With Exogenous Inputs
This article presents the results of the development of a mathematical model for predicting the levelized cost of energy (LCOE) for solar concentrating thermal power systems (CSP systems) based on a nonlinear autoregressive neural network with exogenous inputs (NARX). A two-layer NARX network with sigmoid hidden neurons and linear output neurons has been developed. The input layer is made up of the following variables: the volume of input power of CSP systems in the world, the total world energy consumption, domestic energy consumption, domestic gas consumption, domestic consumption of coal and lignite, domestic energy consumption, the share of renewable energy in electricity generation, the share of wind and solar energy in the production of electricity, carbon dioxide emissions from fuel combustion, the price of Brent oil against the US dollar, and the average price for natural gas auctions. The output layer specifies LCOE values for CSP systems.