用于识别进给轴相互作用磨损效应的网络物理测试环境

Q2 Engineering Journal of Machine Engineering Pub Date : 2023-03-16 DOI:10.36897/jme/162266
Alexander Bott, Robin Stöbel, Gregor Osen, Jürgen Fleischer
{"title":"用于识别进给轴相互作用磨损效应的网络物理测试环境","authors":"Alexander Bott, Robin Stöbel, Gregor Osen, Jürgen Fleischer","doi":"10.36897/jme/162266","DOIUrl":null,"url":null,"abstract":"For a comprehensive optimization and control of production processes, cyber-physical systems are necessary to include machines' time-dependent properties. These wear effects in machine tools, especially the feed axes, can significantly influence the process quality and are a steady research focus. However, the interaction of wear effects between different feed axes has received little attention. Especially models that represent the combined wear influence of different interacting feed axes on the control parameters and machine dynamics hold great potential. To close this knowledge gap, this paper proposes a cyber-physical test environment to identify the interaction of wear effects in feed axes. For this test environment, the relevant boundary conditions of different feed axes in machine tools and their systematic interaction are presented. Through these conditions, a physical test setup is derived and, analogous to this, a virtual model is created. This holistic approach represents the physical and virtual interaction between different components.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyber-Physical Test Environment for the Identification of Interacting Wear Effects in Feed Axes\",\"authors\":\"Alexander Bott, Robin Stöbel, Gregor Osen, Jürgen Fleischer\",\"doi\":\"10.36897/jme/162266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a comprehensive optimization and control of production processes, cyber-physical systems are necessary to include machines' time-dependent properties. These wear effects in machine tools, especially the feed axes, can significantly influence the process quality and are a steady research focus. However, the interaction of wear effects between different feed axes has received little attention. Especially models that represent the combined wear influence of different interacting feed axes on the control parameters and machine dynamics hold great potential. To close this knowledge gap, this paper proposes a cyber-physical test environment to identify the interaction of wear effects in feed axes. For this test environment, the relevant boundary conditions of different feed axes in machine tools and their systematic interaction are presented. Through these conditions, a physical test setup is derived and, analogous to this, a virtual model is created. This holistic approach represents the physical and virtual interaction between different components.\",\"PeriodicalId\":37821,\"journal\":{\"name\":\"Journal of Machine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36897/jme/162266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/162266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了对生产过程进行全面的优化和控制,网络物理系统必须包括机器的时间相关特性。这些磨损效应在机床上,尤其是进给轴上,会显著影响加工质量,是一个稳定的研究热点。然而,不同进给轴之间磨损效应的相互作用很少受到关注。特别是表示不同相互作用的进给轴对控制参数和机器动力学的组合磨损影响的模型具有很大的潜力。为了填补这一知识空白,本文提出了一个网络物理测试环境来识别进给轴磨损效应的相互作用。针对该测试环境,给出了机床不同进给轴的相关边界条件及其系统相互作用。通过这些条件,导出了物理测试设置,并与此类似,创建了虚拟模型。这种整体方法代表了不同组件之间的物理和虚拟交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cyber-Physical Test Environment for the Identification of Interacting Wear Effects in Feed Axes
For a comprehensive optimization and control of production processes, cyber-physical systems are necessary to include machines' time-dependent properties. These wear effects in machine tools, especially the feed axes, can significantly influence the process quality and are a steady research focus. However, the interaction of wear effects between different feed axes has received little attention. Especially models that represent the combined wear influence of different interacting feed axes on the control parameters and machine dynamics hold great potential. To close this knowledge gap, this paper proposes a cyber-physical test environment to identify the interaction of wear effects in feed axes. For this test environment, the relevant boundary conditions of different feed axes in machine tools and their systematic interaction are presented. Through these conditions, a physical test setup is derived and, analogous to this, a virtual model is created. This holistic approach represents the physical and virtual interaction between different components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Machine Engineering
Journal of Machine Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.70
自引率
0.00%
发文量
36
审稿时长
25 weeks
期刊介绍: ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.
期刊最新文献
Fracture Mechanics-Based Modelling of Tool Wear in Machining Ti6Al4V Considering the Microstructure of Cemented Carbide Tools Fuzzy Logic in Risk Assessment of Production Machines Failure in Forming and Assembly Processes Influence of the Substrate Size on the Cooling Behavior and Properties of the DED-LB Process Automatic Detection of Axes for Turning Parts Enabling Federated Learning Services Using OPC UA, Linked Data and GAIA-X in Cognitive Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1