{"title":"日本北海道北部Horonobe地区的古水文地质:从裂缝和孔隙水的化学和同位素资料估计冰期和冰期后的地下水流动条件","authors":"Akihito Mochizuki, Eiichi Ishii","doi":"10.1016/j.apgeochem.2023.105737","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Understanding the difference in groundwater flow between glacial and interglacial periods is crucial for predicting the impact of future climate changes on groundwater movement. This study assesses the difference in groundwater flow between the </span>last glacial<span><span> period (LGP) and the postglacial period (PGP) in fractured </span>mudstones of the Horonobe area, Japan, by combining the data for </span></span>stable isotopes (δD and δ</span><sup>18</sup>O) and Cl<sup>−</sup><span> concentration of fracture and pore waters with radiocarbon (</span><sup>14</sup><span><span>C) age. The isotopic compositions of fractures and pore waters indicate that groundwater at 28–250 m deep in a borehole closest to the recharge area comprises </span>meteoric water, recharged under the same climates as the present. The fracture water has isotopic compositions more similar to meteoric water than the matrix pore water near the fracture. The </span><sup>14</sup>C age of fracture water suggests meteoric water recharge during the PGP. At greater depths in the borehole and sampling points in other boreholes, the isotopic compositions indicate the mixing of glacial meteoric and altered connate water, with the fracture water having comparable isotopic compositions with the matrix pore water. The recharge timing of meteoric water is inferred to be the LGP or before based on <sup>14</sup>C dating. These results suggest that the meteoric water recharged during the PGP flows at a shallow depth, whereas the meteoric water recharged during the LGP intruded to greater depths. This result is consistent with previous inferences from surface geophysical and geological surveys that the depths of local valleys during the LGP were greater by < 50 m than the present ones and enhanced the downward hydraulic gradient. Combining the chemical and isotopic compositions of groundwater with <sup>14</sup>C age helps assess the groundwater flow during the LGP and PGP in fractured rocks.</p></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"155 ","pages":"Article 105737"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paleohydrogeology of the Horonobe area, Northern Hokkaido, Japan: Groundwater flow conditions during glacial and postglacial periods estimated from chemical and isotopic data for fracture and pore water\",\"authors\":\"Akihito Mochizuki, Eiichi Ishii\",\"doi\":\"10.1016/j.apgeochem.2023.105737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Understanding the difference in groundwater flow between glacial and interglacial periods is crucial for predicting the impact of future climate changes on groundwater movement. This study assesses the difference in groundwater flow between the </span>last glacial<span><span> period (LGP) and the postglacial period (PGP) in fractured </span>mudstones of the Horonobe area, Japan, by combining the data for </span></span>stable isotopes (δD and δ</span><sup>18</sup>O) and Cl<sup>−</sup><span> concentration of fracture and pore waters with radiocarbon (</span><sup>14</sup><span><span>C) age. The isotopic compositions of fractures and pore waters indicate that groundwater at 28–250 m deep in a borehole closest to the recharge area comprises </span>meteoric water, recharged under the same climates as the present. The fracture water has isotopic compositions more similar to meteoric water than the matrix pore water near the fracture. The </span><sup>14</sup>C age of fracture water suggests meteoric water recharge during the PGP. At greater depths in the borehole and sampling points in other boreholes, the isotopic compositions indicate the mixing of glacial meteoric and altered connate water, with the fracture water having comparable isotopic compositions with the matrix pore water. The recharge timing of meteoric water is inferred to be the LGP or before based on <sup>14</sup>C dating. These results suggest that the meteoric water recharged during the PGP flows at a shallow depth, whereas the meteoric water recharged during the LGP intruded to greater depths. This result is consistent with previous inferences from surface geophysical and geological surveys that the depths of local valleys during the LGP were greater by < 50 m than the present ones and enhanced the downward hydraulic gradient. Combining the chemical and isotopic compositions of groundwater with <sup>14</sup>C age helps assess the groundwater flow during the LGP and PGP in fractured rocks.</p></div>\",\"PeriodicalId\":8064,\"journal\":{\"name\":\"Applied Geochemistry\",\"volume\":\"155 \",\"pages\":\"Article 105737\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0883292723001828\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292723001828","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Paleohydrogeology of the Horonobe area, Northern Hokkaido, Japan: Groundwater flow conditions during glacial and postglacial periods estimated from chemical and isotopic data for fracture and pore water
Understanding the difference in groundwater flow between glacial and interglacial periods is crucial for predicting the impact of future climate changes on groundwater movement. This study assesses the difference in groundwater flow between the last glacial period (LGP) and the postglacial period (PGP) in fractured mudstones of the Horonobe area, Japan, by combining the data for stable isotopes (δD and δ18O) and Cl− concentration of fracture and pore waters with radiocarbon (14C) age. The isotopic compositions of fractures and pore waters indicate that groundwater at 28–250 m deep in a borehole closest to the recharge area comprises meteoric water, recharged under the same climates as the present. The fracture water has isotopic compositions more similar to meteoric water than the matrix pore water near the fracture. The 14C age of fracture water suggests meteoric water recharge during the PGP. At greater depths in the borehole and sampling points in other boreholes, the isotopic compositions indicate the mixing of glacial meteoric and altered connate water, with the fracture water having comparable isotopic compositions with the matrix pore water. The recharge timing of meteoric water is inferred to be the LGP or before based on 14C dating. These results suggest that the meteoric water recharged during the PGP flows at a shallow depth, whereas the meteoric water recharged during the LGP intruded to greater depths. This result is consistent with previous inferences from surface geophysical and geological surveys that the depths of local valleys during the LGP were greater by < 50 m than the present ones and enhanced the downward hydraulic gradient. Combining the chemical and isotopic compositions of groundwater with 14C age helps assess the groundwater flow during the LGP and PGP in fractured rocks.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.