{"title":"基于牙印图像几何特征的识别技术","authors":"Ning Wang, Jiafa Mao, Lixin Wang, Yahong Hu","doi":"10.1080/21642583.2022.2119440","DOIUrl":null,"url":null,"abstract":"Identity recognition technology is a type of technology that realizes identity verification based on certain biological characteristics. After entering the Internet era, this technology has become a popular research direction in the computer field. In this paper, the image of the tooth print is used as the biological feature to carry out the research on the identification algorithm. This paper adopts the target detection algorithm based on neural network to detect a single tooth imprint area of the target, build a target detection network. The experimental results show that the method has a good segmentation effect on the target area, and the accuracy rate is 91.66%. According to the contour features of the collected tooth print images, a set of tooth pore area ratio feature extraction methods are designed. To objectively evaluate the recognition and classification method, the support vector machine is used as the final classifier. The recognition accuracy rate is 94.09%, and the verification accuracy rate is 94.09%. The test accuracy rate is 91.46%, and the classification effect is excellent. This paper has made a lot of breakthroughs and obvious progress based on the previous research on the tooth impression model.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification technology based on geometric features of tooth print images\",\"authors\":\"Ning Wang, Jiafa Mao, Lixin Wang, Yahong Hu\",\"doi\":\"10.1080/21642583.2022.2119440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identity recognition technology is a type of technology that realizes identity verification based on certain biological characteristics. After entering the Internet era, this technology has become a popular research direction in the computer field. In this paper, the image of the tooth print is used as the biological feature to carry out the research on the identification algorithm. This paper adopts the target detection algorithm based on neural network to detect a single tooth imprint area of the target, build a target detection network. The experimental results show that the method has a good segmentation effect on the target area, and the accuracy rate is 91.66%. According to the contour features of the collected tooth print images, a set of tooth pore area ratio feature extraction methods are designed. To objectively evaluate the recognition and classification method, the support vector machine is used as the final classifier. The recognition accuracy rate is 94.09%, and the verification accuracy rate is 94.09%. The test accuracy rate is 91.46%, and the classification effect is excellent. This paper has made a lot of breakthroughs and obvious progress based on the previous research on the tooth impression model.\",\"PeriodicalId\":46282,\"journal\":{\"name\":\"Systems Science & Control Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2022.2119440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2022.2119440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Identification technology based on geometric features of tooth print images
Identity recognition technology is a type of technology that realizes identity verification based on certain biological characteristics. After entering the Internet era, this technology has become a popular research direction in the computer field. In this paper, the image of the tooth print is used as the biological feature to carry out the research on the identification algorithm. This paper adopts the target detection algorithm based on neural network to detect a single tooth imprint area of the target, build a target detection network. The experimental results show that the method has a good segmentation effect on the target area, and the accuracy rate is 91.66%. According to the contour features of the collected tooth print images, a set of tooth pore area ratio feature extraction methods are designed. To objectively evaluate the recognition and classification method, the support vector machine is used as the final classifier. The recognition accuracy rate is 94.09%, and the verification accuracy rate is 94.09%. The test accuracy rate is 91.46%, and the classification effect is excellent. This paper has made a lot of breakthroughs and obvious progress based on the previous research on the tooth impression model.
期刊介绍:
Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory