Calvin Deutschbein, Andres Meza, Francesco Restuccia, R. Kastner, C. Sturton
{"title":"Isadora:用于硬件安全验证的自动化信息流属性生成","authors":"Calvin Deutschbein, Andres Meza, Francesco Restuccia, R. Kastner, C. Sturton","doi":"10.1007/s13389-022-00306-w","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":48508,"journal":{"name":"Journal of Cryptographic Engineering","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Isadora: automated information-flow property generation for hardware security verification\",\"authors\":\"Calvin Deutschbein, Andres Meza, Francesco Restuccia, R. Kastner, C. Sturton\",\"doi\":\"10.1007/s13389-022-00306-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":48508,\"journal\":{\"name\":\"Journal of Cryptographic Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cryptographic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13389-022-00306-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cryptographic Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13389-022-00306-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
期刊介绍:
The Journal of Cryptographic Engineering (JCEN) presents high-quality scientific research on architectures, algorithms, techniques, tools, implementations and applications in cryptographic engineering, including cryptographic hardware, cryptographic embedded systems, side-channel attacks and countermeasures, and embedded security. JCEN serves the academic and corporate R&D community interested in cryptographic hardware and embedded security.JCEN publishes essential research on broad and varied topics including:Public-key cryptography, secret-key cryptography and post-quantum cryptographyCryptographic implementations include cryptographic processors, physical unclonable functions, true and deterministic random number generators, efficient software and hardware architecturesAttacks on implementations and their countermeasures, such as side-channel attacks, fault attacks, hardware tampering and reverse engineering techniquesSecurity evaluation of real-world cryptographic systems, formal methods and verification tools for secure embedded design that offer provable security, and metrics for measuring securityApplications of state-of-the-art cryptography, such as IoTs, RFIDs, IP protection, cyber-physical systems composed of analog and digital components, automotive security and trusted computing