{"title":"求解确定性鲁棒无能力多分配p-hub中心问题的混合元启发式方法","authors":"Stefan Miskovic, Z. Stanimirović","doi":"10.1504/EJIE.2017.087705","DOIUrl":null,"url":null,"abstract":"This study considers the well-known uncapacitated multiple allocation p-hub centre problem (UMApHCP) and introduces its robust variant (UMApHCP-R) by involving flow variations with unknown distributions. As a solution method to both UMApHCP and UMAPHCP-R, a hybrid metaheuristic algorithm (HMA) is proposed, which successfully combines particle swarm optimisation and a local search heuristic. Constructive elements of the HMA are adapted to the considered problems and its parameters are experimentally adjusted. Experimental results obtained for the UMApHCP show the superiority of the proposed HMA over the existing methods from the literature on standard hub instances in the sense of solution quality or running times. The results obtained by the HMA on large-scale hub instances with up to 900 nodes are also presented. The analysis of the HMA results for the UMApHCP-R on selected problem instances shows the impact of flow variations on the objective function value. [Received 11 September 2016; Revised 23 March 2017; Accepted 7 July 2017]","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/EJIE.2017.087705","citationCount":"4","resultStr":"{\"title\":\"A hybrid metaheuristic method for the deterministic and robust uncapacitated multiple allocation p-hub centre problem\",\"authors\":\"Stefan Miskovic, Z. Stanimirović\",\"doi\":\"10.1504/EJIE.2017.087705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study considers the well-known uncapacitated multiple allocation p-hub centre problem (UMApHCP) and introduces its robust variant (UMApHCP-R) by involving flow variations with unknown distributions. As a solution method to both UMApHCP and UMAPHCP-R, a hybrid metaheuristic algorithm (HMA) is proposed, which successfully combines particle swarm optimisation and a local search heuristic. Constructive elements of the HMA are adapted to the considered problems and its parameters are experimentally adjusted. Experimental results obtained for the UMApHCP show the superiority of the proposed HMA over the existing methods from the literature on standard hub instances in the sense of solution quality or running times. The results obtained by the HMA on large-scale hub instances with up to 900 nodes are also presented. The analysis of the HMA results for the UMApHCP-R on selected problem instances shows the impact of flow variations on the objective function value. [Received 11 September 2016; Revised 23 March 2017; Accepted 7 July 2017]\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/EJIE.2017.087705\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1504/EJIE.2017.087705\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/EJIE.2017.087705","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A hybrid metaheuristic method for the deterministic and robust uncapacitated multiple allocation p-hub centre problem
This study considers the well-known uncapacitated multiple allocation p-hub centre problem (UMApHCP) and introduces its robust variant (UMApHCP-R) by involving flow variations with unknown distributions. As a solution method to both UMApHCP and UMAPHCP-R, a hybrid metaheuristic algorithm (HMA) is proposed, which successfully combines particle swarm optimisation and a local search heuristic. Constructive elements of the HMA are adapted to the considered problems and its parameters are experimentally adjusted. Experimental results obtained for the UMApHCP show the superiority of the proposed HMA over the existing methods from the literature on standard hub instances in the sense of solution quality or running times. The results obtained by the HMA on large-scale hub instances with up to 900 nodes are also presented. The analysis of the HMA results for the UMApHCP-R on selected problem instances shows the impact of flow variations on the objective function value. [Received 11 September 2016; Revised 23 March 2017; Accepted 7 July 2017]
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.