Furin与D614G突变S-糖蛋白结合亲和力的增加可能增强主要严重急性呼吸系统综合征冠状病毒2型变异株的感染性

Sardar Sindhu, R. Ahmad, F. Al-Mulla
{"title":"Furin与D614G突变S-糖蛋白结合亲和力的增加可能增强主要严重急性呼吸系统综合征冠状病毒2型变异株的感染性","authors":"Sardar Sindhu, R. Ahmad, F. Al-Mulla","doi":"10.33696/immunology.3.095","DOIUrl":null,"url":null,"abstract":"The coronavirus disease (COVID)-19 pandemic has profoundly devastated human health and wellbeing all over the world, along with colossal setback to global economy in terms of soaring new infections, hospitalizations, ICU admissions, work losses, closures of businesses and institutions, bankruptcies, and precautionary measures involving social distancing, hygiene, and travel restrictions across the globe. COVID-19 was declared by the World Health Organization (WHO) as a public health emergency of international concern in January 2020, and then as a pandemic in March 2020. There are over 154.64 million confirmed coronavirus infections and more than 3.23 million deaths reported to the WHO globally until date (as of 11:21 a.m. CEST, 6 May, 2021) [1]. The disease is caused by a zoonotic positive-sense single-stranded ssRNA virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is known to have four structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N), with close genetic similarity to bat coronaviruses. The global science initiative source called “Global Initiative on Sharing Avian Influenza Data” (GISAID) has reported seven SARS-CoV-2 clades as G, GH, GR, L, O, S, and V [2].","PeriodicalId":73644,"journal":{"name":"Journal of cellular immunology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Increased Binding Affinity of Furin to D614G Mutant S-glycoprotein May Augment Infectivity of the Predominating SARS-CoV-2 Variant\",\"authors\":\"Sardar Sindhu, R. Ahmad, F. Al-Mulla\",\"doi\":\"10.33696/immunology.3.095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coronavirus disease (COVID)-19 pandemic has profoundly devastated human health and wellbeing all over the world, along with colossal setback to global economy in terms of soaring new infections, hospitalizations, ICU admissions, work losses, closures of businesses and institutions, bankruptcies, and precautionary measures involving social distancing, hygiene, and travel restrictions across the globe. COVID-19 was declared by the World Health Organization (WHO) as a public health emergency of international concern in January 2020, and then as a pandemic in March 2020. There are over 154.64 million confirmed coronavirus infections and more than 3.23 million deaths reported to the WHO globally until date (as of 11:21 a.m. CEST, 6 May, 2021) [1]. The disease is caused by a zoonotic positive-sense single-stranded ssRNA virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is known to have four structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N), with close genetic similarity to bat coronaviruses. The global science initiative source called “Global Initiative on Sharing Avian Influenza Data” (GISAID) has reported seven SARS-CoV-2 clades as G, GH, GR, L, O, S, and V [2].\",\"PeriodicalId\":73644,\"journal\":{\"name\":\"Journal of cellular immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cellular immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33696/immunology.3.095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/immunology.3.095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

冠状病毒病(COVID -19)大流行在全球范围内严重破坏了人类的健康和福祉,同时也给全球经济带来了巨大挫折,包括新感染病例激增、住院、重症监护室入院、失业、企业和机构关闭、破产,以及涉及社交距离、卫生和旅行限制的预防措施。2020年1月,世界卫生组织(世卫组织)宣布COVID-19为国际关注的突发公共卫生事件,然后在2020年3月宣布为大流行。截至目前(截至美国东部时间2021年5月6日上午11点21分),全球向世卫组织报告的冠状病毒确诊病例超过1.5464亿例,死亡病例超过323万例。该疾病是由一种人畜共患的正感单链ssRNA病毒引起的,称为严重急性呼吸综合征冠状病毒2 (SARS-CoV-2),已知该病毒具有四种结构蛋白:刺突(S)、包膜(E)、膜(M)和核衣壳(N),与蝙蝠冠状病毒具有密切的遗传相似性。名为“共享禽流感数据全球倡议”(GISAID)的全球科学倡议来源报告了7个SARS-CoV-2分支,分别为G、GH、GR、L、O、S和V[2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Increased Binding Affinity of Furin to D614G Mutant S-glycoprotein May Augment Infectivity of the Predominating SARS-CoV-2 Variant
The coronavirus disease (COVID)-19 pandemic has profoundly devastated human health and wellbeing all over the world, along with colossal setback to global economy in terms of soaring new infections, hospitalizations, ICU admissions, work losses, closures of businesses and institutions, bankruptcies, and precautionary measures involving social distancing, hygiene, and travel restrictions across the globe. COVID-19 was declared by the World Health Organization (WHO) as a public health emergency of international concern in January 2020, and then as a pandemic in March 2020. There are over 154.64 million confirmed coronavirus infections and more than 3.23 million deaths reported to the WHO globally until date (as of 11:21 a.m. CEST, 6 May, 2021) [1]. The disease is caused by a zoonotic positive-sense single-stranded ssRNA virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is known to have four structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N), with close genetic similarity to bat coronaviruses. The global science initiative source called “Global Initiative on Sharing Avian Influenza Data” (GISAID) has reported seven SARS-CoV-2 clades as G, GH, GR, L, O, S, and V [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Personalized Neoantigen DNA Cancer Vaccines: Current Status and Future Perspectives A Natural Metabolite and Inhibitor of the NLRP3 Inflammasome: 4-hydroxynonenal. The Natural History of Post-Chikungunya Viral Arthritis Disease Activity and T-cell Immunology: A Cohort Study. Essentials of CAR-T Therapy and Associated Microbial Challenges in Long Run Immunotherapy. Can Molecular Biomarkers be Utilized to Determine Appropriate Adjuvant Therapy in Early-Stage Non-Small Cell Lung Cancer (NSCLC)?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1