{"title":"硫化物矿石复杂电导率的多电容电松弛模型","authors":"Y. Ohta, T. Goto, Koki Kashiwaya, K. Koike","doi":"10.1080/08123985.2023.2189584","DOIUrl":null,"url":null,"abstract":"ABSTRACT Many studies have been conducted to analyse dielectric polarisation and the complex electrical conductivity characteristics by the Cole–Cole type relaxation approximating rocks with a uniform material. That method has revealed the correlation between metal contents and chargeability, between the central relaxation time and the metallic particle size, and so on. Based on the model’s success, such models have been extended to those with multiple capacitances. However, these models cannot represent the mechanism of electrical flow in rocks using equivalent circuits and cannot explain the electrical behaviour of rocks that deviates significantly from the assumptions of the models. Therefore, in this study, by re-evaluating Pelton’s equation, we strove to formulate an appropriate multiple-capacitance model expressed by an equivalent circuit, with the aim of ascertaining electrical features more easily and properly than through the convolution of electrical response functions. We achieved theoretical expansion of Pelton-type formulae to multiple capacitances. Our Double-Pelton equivalent circuit model (DPM) was applied to the observed complex conductivity curves of artificial samples including pyrite. The obtained parameters of our DPM were found to have a good correlation to the rock features. We achieved to show that the conductive mechanism of the complex geometrical features of rock samples can be modelled simply and effectively. The continuous efficiency of sulphide particles in the direction of the electric field, and pyrite particles which can act as bottleneck conductors as in percolation theory, are found to be playing an important role in electric conduction.","PeriodicalId":50460,"journal":{"name":"Exploration Geophysics","volume":"54 1","pages":"463 - 473"},"PeriodicalIF":0.6000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-capacitance electric relaxation model for complex electrical conductivity of sulphide ores\",\"authors\":\"Y. Ohta, T. Goto, Koki Kashiwaya, K. Koike\",\"doi\":\"10.1080/08123985.2023.2189584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Many studies have been conducted to analyse dielectric polarisation and the complex electrical conductivity characteristics by the Cole–Cole type relaxation approximating rocks with a uniform material. That method has revealed the correlation between metal contents and chargeability, between the central relaxation time and the metallic particle size, and so on. Based on the model’s success, such models have been extended to those with multiple capacitances. However, these models cannot represent the mechanism of electrical flow in rocks using equivalent circuits and cannot explain the electrical behaviour of rocks that deviates significantly from the assumptions of the models. Therefore, in this study, by re-evaluating Pelton’s equation, we strove to formulate an appropriate multiple-capacitance model expressed by an equivalent circuit, with the aim of ascertaining electrical features more easily and properly than through the convolution of electrical response functions. We achieved theoretical expansion of Pelton-type formulae to multiple capacitances. Our Double-Pelton equivalent circuit model (DPM) was applied to the observed complex conductivity curves of artificial samples including pyrite. The obtained parameters of our DPM were found to have a good correlation to the rock features. We achieved to show that the conductive mechanism of the complex geometrical features of rock samples can be modelled simply and effectively. The continuous efficiency of sulphide particles in the direction of the electric field, and pyrite particles which can act as bottleneck conductors as in percolation theory, are found to be playing an important role in electric conduction.\",\"PeriodicalId\":50460,\"journal\":{\"name\":\"Exploration Geophysics\",\"volume\":\"54 1\",\"pages\":\"463 - 473\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exploration Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/08123985.2023.2189584\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08123985.2023.2189584","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Multi-capacitance electric relaxation model for complex electrical conductivity of sulphide ores
ABSTRACT Many studies have been conducted to analyse dielectric polarisation and the complex electrical conductivity characteristics by the Cole–Cole type relaxation approximating rocks with a uniform material. That method has revealed the correlation between metal contents and chargeability, between the central relaxation time and the metallic particle size, and so on. Based on the model’s success, such models have been extended to those with multiple capacitances. However, these models cannot represent the mechanism of electrical flow in rocks using equivalent circuits and cannot explain the electrical behaviour of rocks that deviates significantly from the assumptions of the models. Therefore, in this study, by re-evaluating Pelton’s equation, we strove to formulate an appropriate multiple-capacitance model expressed by an equivalent circuit, with the aim of ascertaining electrical features more easily and properly than through the convolution of electrical response functions. We achieved theoretical expansion of Pelton-type formulae to multiple capacitances. Our Double-Pelton equivalent circuit model (DPM) was applied to the observed complex conductivity curves of artificial samples including pyrite. The obtained parameters of our DPM were found to have a good correlation to the rock features. We achieved to show that the conductive mechanism of the complex geometrical features of rock samples can be modelled simply and effectively. The continuous efficiency of sulphide particles in the direction of the electric field, and pyrite particles which can act as bottleneck conductors as in percolation theory, are found to be playing an important role in electric conduction.
期刊介绍:
Exploration Geophysics is published on behalf of the Australian Society of Exploration Geophysicists (ASEG), Society of Exploration Geophysics of Japan (SEGJ), and Korean Society of Earth and Exploration Geophysicists (KSEG).
The journal presents significant case histories, advances in data interpretation, and theoretical developments resulting from original research in exploration and applied geophysics. Papers that may have implications for field practice in Australia, even if they report work from other continents, will be welcome. ´Exploration and applied geophysics´ will be interpreted broadly by the editors, so that geotechnical and environmental studies are by no means precluded.
Papers are expected to be of a high standard. Exploration Geophysics uses an international pool of reviewers drawn from industry and academic authorities as selected by the editorial panel.
The journal provides a common meeting ground for geophysicists active in either field studies or basic research.