{"title":"层状双氢氧化物在放射性污水净化中的应用研究进展","authors":"N. G. Kobylinska, L. M. Puzyrnaya, G. M. Pshinko","doi":"10.1007/s11237-022-09739-0","DOIUrl":null,"url":null,"abstract":"<div><div><p>A critical review of the last decade’s literature on the synthesis, modification, and properties of layered double hydroxides (LDHs) regarding their use as sorbents for the removal of radionuclides from aquatic environments has been conducted. The evaluation of their adsorption capacity against U(VI), <sup>137</sup>Cs, <sup>90</sup>Sr, <sup>60</sup>Co, <sup>152+154</sup>Eu(III), and <sup>241</sup>Am has been performed on the basis of the analysis of the effect of the LDH preparation method, the nature of the metal ions in the material layers and compounds intercalated into their interlayer space. It is shown that magnetic composites of LDHs chelated forms have significant advantages for a practical use for the removal of both cationic and, especially, anionic forms of uranium(VI) from aquatic environments. Zn,Al-LDHs intercalated with the inorganic compounds, namely hexacyanoferrate(II) anions and copper(II) hexacyanoferrate, are found to be the most effective for the sorption extraction of <sup>137</sup>Cs and <sup>90</sup>Sr radionuclides.</p></div></div>","PeriodicalId":796,"journal":{"name":"Theoretical and Experimental Chemistry","volume":"58 4","pages":"221 - 239"},"PeriodicalIF":0.7000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Layered Double Hydroxides as Promising Adsorbents for Purification of Radioactive Polluted Water: A Review\",\"authors\":\"N. G. Kobylinska, L. M. Puzyrnaya, G. M. Pshinko\",\"doi\":\"10.1007/s11237-022-09739-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>A critical review of the last decade’s literature on the synthesis, modification, and properties of layered double hydroxides (LDHs) regarding their use as sorbents for the removal of radionuclides from aquatic environments has been conducted. The evaluation of their adsorption capacity against U(VI), <sup>137</sup>Cs, <sup>90</sup>Sr, <sup>60</sup>Co, <sup>152+154</sup>Eu(III), and <sup>241</sup>Am has been performed on the basis of the analysis of the effect of the LDH preparation method, the nature of the metal ions in the material layers and compounds intercalated into their interlayer space. It is shown that magnetic composites of LDHs chelated forms have significant advantages for a practical use for the removal of both cationic and, especially, anionic forms of uranium(VI) from aquatic environments. Zn,Al-LDHs intercalated with the inorganic compounds, namely hexacyanoferrate(II) anions and copper(II) hexacyanoferrate, are found to be the most effective for the sorption extraction of <sup>137</sup>Cs and <sup>90</sup>Sr radionuclides.</p></div></div>\",\"PeriodicalId\":796,\"journal\":{\"name\":\"Theoretical and Experimental Chemistry\",\"volume\":\"58 4\",\"pages\":\"221 - 239\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Experimental Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11237-022-09739-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Experimental Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11237-022-09739-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Layered Double Hydroxides as Promising Adsorbents for Purification of Radioactive Polluted Water: A Review
A critical review of the last decade’s literature on the synthesis, modification, and properties of layered double hydroxides (LDHs) regarding their use as sorbents for the removal of radionuclides from aquatic environments has been conducted. The evaluation of their adsorption capacity against U(VI), 137Cs, 90Sr, 60Co, 152+154Eu(III), and 241Am has been performed on the basis of the analysis of the effect of the LDH preparation method, the nature of the metal ions in the material layers and compounds intercalated into their interlayer space. It is shown that magnetic composites of LDHs chelated forms have significant advantages for a practical use for the removal of both cationic and, especially, anionic forms of uranium(VI) from aquatic environments. Zn,Al-LDHs intercalated with the inorganic compounds, namely hexacyanoferrate(II) anions and copper(II) hexacyanoferrate, are found to be the most effective for the sorption extraction of 137Cs and 90Sr radionuclides.
期刊介绍:
Theoretical and Experimental Chemistry is a journal for the rapid publication of research communications and reviews on modern problems of physical chemistry such as:
a) physicochemical bases, principles, and methods for creation of novel processes, compounds, and materials;
b) physicochemical principles of chemical process control, influence of external physical forces on chemical reactions;
c) physical nanochemistry, nanostructures and nanomaterials, functional nanomaterials, size-dependent properties of materials.