HPA-ZSM-5纳米复合材料作为合成茚并吡唑酮的高效催化剂

IF 1.8 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Main Group Metal Chemistry Pub Date : 2022-01-01 DOI:10.1515/mgmc-2022-0003
Seyyed Mohammad Ebrahimi, J. Safaei‐Ghomi, Mohammaed Abdulridha Mutashar
{"title":"HPA-ZSM-5纳米复合材料作为合成茚并吡唑酮的高效催化剂","authors":"Seyyed Mohammad Ebrahimi, J. Safaei‐Ghomi, Mohammaed Abdulridha Mutashar","doi":"10.1515/mgmc-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract tHPA-ZSM-5 nanocomposites as a superior catalyst have been applied for the synthesis of indenopyrazolones through a three-component reaction of phenylhydrazine, benzaldehydes, and indan-1,2,3-trione at room temperature in acetonitrile. The zeolite catalyst has been characterized by X-ray diffraction, field emission scanning electronic microscopes, Fourier transform infrared, energy-dispersive spectroscopy, thermogravimetric analysis, and N2-adsorption analysis. The various aromatic aldehydes can be utilized in this method. These results showed that aromatic aldehydes with electron-withdrawing groups reacted faster than aldehydes with electron-releasing groups. Experimental simplicity, excellent yields in short reaction times, reusability of the catalyst, and low catalyst loading are some of the substantial features of this method. Graphical abstract","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"45 1","pages":"57 - 73"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HPA-ZSM-5 nanocomposite as high-performance catalyst for the synthesis of indenopyrazolones\",\"authors\":\"Seyyed Mohammad Ebrahimi, J. Safaei‐Ghomi, Mohammaed Abdulridha Mutashar\",\"doi\":\"10.1515/mgmc-2022-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract tHPA-ZSM-5 nanocomposites as a superior catalyst have been applied for the synthesis of indenopyrazolones through a three-component reaction of phenylhydrazine, benzaldehydes, and indan-1,2,3-trione at room temperature in acetonitrile. The zeolite catalyst has been characterized by X-ray diffraction, field emission scanning electronic microscopes, Fourier transform infrared, energy-dispersive spectroscopy, thermogravimetric analysis, and N2-adsorption analysis. The various aromatic aldehydes can be utilized in this method. These results showed that aromatic aldehydes with electron-withdrawing groups reacted faster than aldehydes with electron-releasing groups. Experimental simplicity, excellent yields in short reaction times, reusability of the catalyst, and low catalyst loading are some of the substantial features of this method. Graphical abstract\",\"PeriodicalId\":48891,\"journal\":{\"name\":\"Main Group Metal Chemistry\",\"volume\":\"45 1\",\"pages\":\"57 - 73\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Main Group Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/mgmc-2022-0003\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/mgmc-2022-0003","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

摘要以苯基肼、苯甲醛和吲哚-1,2,3-三酮为原料,在室温条件下,以tHPA-ZSM-5纳米复合材料为催化剂,合成了吲哚吡唑酮类化合物。采用x射线衍射、场发射扫描电镜、傅里叶变换红外、能量色散光谱、热重分析和n2吸附分析对催化剂进行了表征。各种芳香醛均可用于该方法。结果表明,具有吸电子基团的芳香醛比具有释放电子基团的芳香醛反应速度快。实验简单,反应时间短,收率高,催化剂可重复使用,催化剂负载低是该方法的主要特点。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HPA-ZSM-5 nanocomposite as high-performance catalyst for the synthesis of indenopyrazolones
Abstract tHPA-ZSM-5 nanocomposites as a superior catalyst have been applied for the synthesis of indenopyrazolones through a three-component reaction of phenylhydrazine, benzaldehydes, and indan-1,2,3-trione at room temperature in acetonitrile. The zeolite catalyst has been characterized by X-ray diffraction, field emission scanning electronic microscopes, Fourier transform infrared, energy-dispersive spectroscopy, thermogravimetric analysis, and N2-adsorption analysis. The various aromatic aldehydes can be utilized in this method. These results showed that aromatic aldehydes with electron-withdrawing groups reacted faster than aldehydes with electron-releasing groups. Experimental simplicity, excellent yields in short reaction times, reusability of the catalyst, and low catalyst loading are some of the substantial features of this method. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Main Group Metal Chemistry
Main Group Metal Chemistry CHEMISTRY, INORGANIC & NUCLEAR-CHEMISTRY, ORGANIC
CiteScore
4.10
自引率
27.80%
发文量
21
审稿时长
4 weeks
期刊介绍: This journal is committed to the publication of short communications, original research, and review articles within the field of main group metal and semi-metal chemistry, Main Group Metal Chemistry is an open-access, peer-reviewed journal that publishes in ongoing way. Papers addressing the theoretical, spectroscopic, mechanistic and synthetic aspects of inorganic, coordination and organometallic main group metal and semi-metal compounds, including zinc, cadmium and mercury are welcome. The journal also publishes studies relating to environmental aspects of these metals, their toxicology, release pathways and fate. Articles on the applications of main group metal chemistry, including in the fields of polymer chemistry, agriculture, electronics and catalysis, are also accepted.
期刊最新文献
Two new zinc(ii) coordination complexes constructed by phenanthroline derivate: Synthesis and structure Retraction to “Aluminium(iii), Fe(ii) Complexes and Dyeing Properties of Apigenin(5,7,4′-trihydroxy flavone)” Synthesis and crystal structure of an ionic phenyltin(iv) complex of N-salicylidene-valine Lithium fluoroarylsilylamides and their structural features On computation of neighbourhood degree sum-based topological indices for zinc-based metal–organic frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1