分析化学中的化学计量学

Q4 Agricultural and Biological Sciences Nova Biotechnologica et Chimica Pub Date : 2021-11-22 DOI:10.36547/nbc.1280
Darinka Brodnjak Vončina
{"title":"分析化学中的化学计量学","authors":"Darinka Brodnjak Vončina","doi":"10.36547/nbc.1280","DOIUrl":null,"url":null,"abstract":"Chemometrics is a scientific discipline closely connected with statistics and mathematics. It has an important role in analytical chemistry. Modern analytical methods provide opportunity to collect large amounts of data for various samples. For handling analytical results different chemometric methods are employed, such as basic statistical methods for the determination of mean and median values, standard deviations, minimal and maximal values of measured parameters and their mutual correlation coefficients, the principal component analysis (PCA), cluster analysis (CA), and linear discriminant analysis (LDA). The objectives of chemometrics in analytical chemistry are focused on characterization and chemometrical classification of different samples. The quality of environmental samples such as water, sediment, soil, air samples etc. can be determined according to measured physical and chemical parameters, which represent the individual samples. Chemometric methods give information regarding measured parameters about similarity between sampling locations, sources of pollution, seasonal behavior and time trends. Monitoring of general pollution of environmental samples and following measuring parameters which are above permitted level given by legislation can be used for searching of pollution source and for planning \nprevention measures from pollution. Food samples can also be characterized by chemometrical methods. Chemometrics can be used for fast and efficient determination of food sample categories, such as edible oils, wines, fruits and fruit juices etc. Classification can also be performed according to the origin, source or season. From all these facts it is evident that the aim of chemometrics in analytical chemistry is high and extensive.","PeriodicalId":19210,"journal":{"name":"Nova Biotechnologica et Chimica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemometrics in analytical chemistry\",\"authors\":\"Darinka Brodnjak Vončina\",\"doi\":\"10.36547/nbc.1280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemometrics is a scientific discipline closely connected with statistics and mathematics. It has an important role in analytical chemistry. Modern analytical methods provide opportunity to collect large amounts of data for various samples. For handling analytical results different chemometric methods are employed, such as basic statistical methods for the determination of mean and median values, standard deviations, minimal and maximal values of measured parameters and their mutual correlation coefficients, the principal component analysis (PCA), cluster analysis (CA), and linear discriminant analysis (LDA). The objectives of chemometrics in analytical chemistry are focused on characterization and chemometrical classification of different samples. The quality of environmental samples such as water, sediment, soil, air samples etc. can be determined according to measured physical and chemical parameters, which represent the individual samples. Chemometric methods give information regarding measured parameters about similarity between sampling locations, sources of pollution, seasonal behavior and time trends. Monitoring of general pollution of environmental samples and following measuring parameters which are above permitted level given by legislation can be used for searching of pollution source and for planning \\nprevention measures from pollution. Food samples can also be characterized by chemometrical methods. Chemometrics can be used for fast and efficient determination of food sample categories, such as edible oils, wines, fruits and fruit juices etc. Classification can also be performed according to the origin, source or season. From all these facts it is evident that the aim of chemometrics in analytical chemistry is high and extensive.\",\"PeriodicalId\":19210,\"journal\":{\"name\":\"Nova Biotechnologica et Chimica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nova Biotechnologica et Chimica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36547/nbc.1280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nova Biotechnologica et Chimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36547/nbc.1280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

化学计量学是一门与统计学和数学密切相关的科学学科。它在分析化学中起着重要作用。现代分析方法为收集各种样品的大量数据提供了机会。为了处理分析结果,采用了不同的化学计量方法,例如用于确定测量参数的平均值和中值、标准差、最小值和最大值及其互相关系数的基本统计方法、主成分分析(PCA)、聚类分析(CA)和线性判别分析(LDA)。化学计量学在分析化学中的目标集中在不同样品的表征和化学计量分类上。水、沉积物、土壤、空气样本等环境样本的质量可以根据测量的物理和化学参数来确定,这些参数代表了单个样本。化学计量方法提供了有关采样位置、污染源、季节行为和时间趋势之间相似性的测量参数的信息。对环境样品的一般污染进行监测,并遵循立法规定的高于允许水平的测量参数,可用于寻找污染源和规划污染预防措施。食品样品也可以通过化学计量方法进行表征。化学计量学可用于快速有效地确定食品样品类别,如食用油、葡萄酒、水果和果汁等。也可根据产地、来源或季节进行分类。从所有这些事实来看,化学计量学在分析化学中的目标是高而广泛的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemometrics in analytical chemistry
Chemometrics is a scientific discipline closely connected with statistics and mathematics. It has an important role in analytical chemistry. Modern analytical methods provide opportunity to collect large amounts of data for various samples. For handling analytical results different chemometric methods are employed, such as basic statistical methods for the determination of mean and median values, standard deviations, minimal and maximal values of measured parameters and their mutual correlation coefficients, the principal component analysis (PCA), cluster analysis (CA), and linear discriminant analysis (LDA). The objectives of chemometrics in analytical chemistry are focused on characterization and chemometrical classification of different samples. The quality of environmental samples such as water, sediment, soil, air samples etc. can be determined according to measured physical and chemical parameters, which represent the individual samples. Chemometric methods give information regarding measured parameters about similarity between sampling locations, sources of pollution, seasonal behavior and time trends. Monitoring of general pollution of environmental samples and following measuring parameters which are above permitted level given by legislation can be used for searching of pollution source and for planning prevention measures from pollution. Food samples can also be characterized by chemometrical methods. Chemometrics can be used for fast and efficient determination of food sample categories, such as edible oils, wines, fruits and fruit juices etc. Classification can also be performed according to the origin, source or season. From all these facts it is evident that the aim of chemometrics in analytical chemistry is high and extensive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nova Biotechnologica et Chimica
Nova Biotechnologica et Chimica Agricultural and Biological Sciences-Food Science
CiteScore
0.60
自引率
0.00%
发文量
47
审稿时长
24 weeks
期刊最新文献
Formation, characterization of gelatine from the scales of Labeo rohita and its comparison with bovine bone gelatine Unveiling unknown transcripts and exons: Insights into durian var. D24 (Durio zibethinus Murr.) fruit development and ripening Computational study demonstrated anti-diabetic potencies of Diosgenin and Multiflorenol as peroxisome proliferator-activated receptor gamma agonist Biosorption of Zn by dried biomass of Euglena gracilis from aqueous solutions Effect of exogenous dithiothreitol and lipoic acid on the content of photosynthetic pigments in oilseed rape Brassica napus L.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1