Thorsten Wagner, Christoph Hoyer, Christian Ringl, Jochen Kuhn
{"title":"利用低成本材料和增强现实研究衍射现象","authors":"Thorsten Wagner, Christoph Hoyer, Christian Ringl, Jochen Kuhn","doi":"10.1119/5.0149766","DOIUrl":null,"url":null,"abstract":"So far, there have only been a few articles in this column that discussed diffraction or augmented reality (AR) enhancements. In this article, we want to bring both aspects together and describe an experiment that can be used to investigate diffraction phenomena with low-cost materials and augmented reality in the classroom. Diffraction experiments in schools often have (at least) two difficulties:","PeriodicalId":48709,"journal":{"name":"Physics Teacher","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating diffraction phenomena with low-cost material and\\n augmented reality\",\"authors\":\"Thorsten Wagner, Christoph Hoyer, Christian Ringl, Jochen Kuhn\",\"doi\":\"10.1119/5.0149766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"So far, there have only been a few articles in this column that discussed diffraction or augmented reality (AR) enhancements. In this article, we want to bring both aspects together and describe an experiment that can be used to investigate diffraction phenomena with low-cost materials and augmented reality in the classroom. Diffraction experiments in schools often have (at least) two difficulties:\",\"PeriodicalId\":48709,\"journal\":{\"name\":\"Physics Teacher\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Teacher\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1119/5.0149766\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Teacher","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1119/5.0149766","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Investigating diffraction phenomena with low-cost material and
augmented reality
So far, there have only been a few articles in this column that discussed diffraction or augmented reality (AR) enhancements. In this article, we want to bring both aspects together and describe an experiment that can be used to investigate diffraction phenomena with low-cost materials and augmented reality in the classroom. Diffraction experiments in schools often have (at least) two difficulties:
期刊介绍:
TPT publishes peer-reviewed papers on the teaching of introductory physics and on topics such as contemporary physics, applied physics, and the history of physics. Dedicated to strengthening the teaching of introductory physics at all levels, including secondary schools colleges and universities, TPT provides peer-reviewed content and materials to be used in classrooms and instructional laboratories.