Carlos Bruno Barreto Luna, Eduardo da Silva Barbosa Ferreira, Anna Raffaela de Matos Costa, Yeda Medeiros Bastos de Almeida, João Baptista da Costa Agra de Melo, Edcleide Maria Araújo
{"title":"马来酸酐和丙烯酸接枝聚乙烯系聚酰胺6基共混物的反应工艺研究&功能化程度的影响","authors":"Carlos Bruno Barreto Luna, Eduardo da Silva Barbosa Ferreira, Anna Raffaela de Matos Costa, Yeda Medeiros Bastos de Almeida, João Baptista da Costa Agra de Melo, Edcleide Maria Araújo","doi":"10.1002/mren.202300031","DOIUrl":null,"url":null,"abstract":"<p>The reactivity of different polyethylene modifiers based on acrylic acid (AA) and maleic anhydride (MA) with polyamide 6 (PA6) is investigated, using several degrees of functionalization. The polymer blends are processed in an internal mixer and injection molded. Mechanical, rheological, infrared spectroscopy, thermal, thermomechanical properties, and morphology are evaluated. The torque rheometry results show that higher functionalization degrees favored a high reactivity with PA6. As a consequence, there is an increase in the viscosity of the polymer blends, which is reflected in the reduction of the melt flow index (MFI), compared to PA6. High impact strength and elongation at break properties confirm the blends' compatibility. The elastic modulus and the tensile strength maintain high values, suggesting a balance of mechanical properties. In addition, the polymer blends' heat deflection temperature (HDT) and thermal stability properties are comparable to neat PA6. The morphology obtained by scanning electron microscopy show dispersed and refined particles in the PA6 matrix, indicating stabilization at the interface. Incorporating only 10% of high-density polyethylene grafted with acrylic-acid (HDPE-g-AA) is very efficient in optimizing the properties of PA6, contributing to broadening the range of applications for the processing industry.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Toward Reactive Processing of Polyamide 6 Based Blends with Polyethylene Grafted with Maleic Anhydride and Acrylic Acid: Effect of Functionalization Degree\",\"authors\":\"Carlos Bruno Barreto Luna, Eduardo da Silva Barbosa Ferreira, Anna Raffaela de Matos Costa, Yeda Medeiros Bastos de Almeida, João Baptista da Costa Agra de Melo, Edcleide Maria Araújo\",\"doi\":\"10.1002/mren.202300031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The reactivity of different polyethylene modifiers based on acrylic acid (AA) and maleic anhydride (MA) with polyamide 6 (PA6) is investigated, using several degrees of functionalization. The polymer blends are processed in an internal mixer and injection molded. Mechanical, rheological, infrared spectroscopy, thermal, thermomechanical properties, and morphology are evaluated. The torque rheometry results show that higher functionalization degrees favored a high reactivity with PA6. As a consequence, there is an increase in the viscosity of the polymer blends, which is reflected in the reduction of the melt flow index (MFI), compared to PA6. High impact strength and elongation at break properties confirm the blends' compatibility. The elastic modulus and the tensile strength maintain high values, suggesting a balance of mechanical properties. In addition, the polymer blends' heat deflection temperature (HDT) and thermal stability properties are comparable to neat PA6. The morphology obtained by scanning electron microscopy show dispersed and refined particles in the PA6 matrix, indicating stabilization at the interface. Incorporating only 10% of high-density polyethylene grafted with acrylic-acid (HDPE-g-AA) is very efficient in optimizing the properties of PA6, contributing to broadening the range of applications for the processing industry.</p>\",\"PeriodicalId\":18052,\"journal\":{\"name\":\"Macromolecular Reaction Engineering\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Reaction Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300031\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Toward Reactive Processing of Polyamide 6 Based Blends with Polyethylene Grafted with Maleic Anhydride and Acrylic Acid: Effect of Functionalization Degree
The reactivity of different polyethylene modifiers based on acrylic acid (AA) and maleic anhydride (MA) with polyamide 6 (PA6) is investigated, using several degrees of functionalization. The polymer blends are processed in an internal mixer and injection molded. Mechanical, rheological, infrared spectroscopy, thermal, thermomechanical properties, and morphology are evaluated. The torque rheometry results show that higher functionalization degrees favored a high reactivity with PA6. As a consequence, there is an increase in the viscosity of the polymer blends, which is reflected in the reduction of the melt flow index (MFI), compared to PA6. High impact strength and elongation at break properties confirm the blends' compatibility. The elastic modulus and the tensile strength maintain high values, suggesting a balance of mechanical properties. In addition, the polymer blends' heat deflection temperature (HDT) and thermal stability properties are comparable to neat PA6. The morphology obtained by scanning electron microscopy show dispersed and refined particles in the PA6 matrix, indicating stabilization at the interface. Incorporating only 10% of high-density polyethylene grafted with acrylic-acid (HDPE-g-AA) is very efficient in optimizing the properties of PA6, contributing to broadening the range of applications for the processing industry.
期刊介绍:
Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.