Brandon Z. McDonald, Connor C. Gee, Forrest M. Kievit
{"title":"纳米技术研究人员使用创伤性脑损伤动物模型指南","authors":"Brandon Z. McDonald, Connor C. Gee, Forrest M. Kievit","doi":"10.3390/jnt2040014","DOIUrl":null,"url":null,"abstract":"Traumatic brain injury (TBI) is currently the leading cause of injury-related morbidity and mortality worldwide, with an estimated global cost of USD 400 billion annually. Both clinical and preclinical behavioral outcomes associated with TBI are heterogeneous in nature and influenced by the mechanism and frequency of injury. Previous literature has investigated this relationship through the development of animal models and behavioral tasks. However, recent advancements in these methods may provide insight into the translation of therapeutics into a clinical setting. In this review, we characterize various animal models and behavioral tasks to provide guidelines for evaluating the therapeutic efficacy of treatment options in TBI. We provide a brief review into the systems utilized in TBI classification and provide comparisons to the animal models that have been developed. In addition, we discuss the role of behavioral tasks in evaluating outcomes associated with TBI. Our goal is to provide those in the nanotheranostic field a guide for selecting an adequate TBI animal model and behavioral task for assessment of outcomes to increase research in this field.","PeriodicalId":73846,"journal":{"name":"Journal of nanotheranostics","volume":"2 1","pages":"224 - 268"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Nanotheranostic Researcher’s Guide for Use of Animal Models of Traumatic Brain Injury\",\"authors\":\"Brandon Z. McDonald, Connor C. Gee, Forrest M. Kievit\",\"doi\":\"10.3390/jnt2040014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traumatic brain injury (TBI) is currently the leading cause of injury-related morbidity and mortality worldwide, with an estimated global cost of USD 400 billion annually. Both clinical and preclinical behavioral outcomes associated with TBI are heterogeneous in nature and influenced by the mechanism and frequency of injury. Previous literature has investigated this relationship through the development of animal models and behavioral tasks. However, recent advancements in these methods may provide insight into the translation of therapeutics into a clinical setting. In this review, we characterize various animal models and behavioral tasks to provide guidelines for evaluating the therapeutic efficacy of treatment options in TBI. We provide a brief review into the systems utilized in TBI classification and provide comparisons to the animal models that have been developed. In addition, we discuss the role of behavioral tasks in evaluating outcomes associated with TBI. Our goal is to provide those in the nanotheranostic field a guide for selecting an adequate TBI animal model and behavioral task for assessment of outcomes to increase research in this field.\",\"PeriodicalId\":73846,\"journal\":{\"name\":\"Journal of nanotheranostics\",\"volume\":\"2 1\",\"pages\":\"224 - 268\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanotheranostics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jnt2040014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanotheranostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jnt2040014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Nanotheranostic Researcher’s Guide for Use of Animal Models of Traumatic Brain Injury
Traumatic brain injury (TBI) is currently the leading cause of injury-related morbidity and mortality worldwide, with an estimated global cost of USD 400 billion annually. Both clinical and preclinical behavioral outcomes associated with TBI are heterogeneous in nature and influenced by the mechanism and frequency of injury. Previous literature has investigated this relationship through the development of animal models and behavioral tasks. However, recent advancements in these methods may provide insight into the translation of therapeutics into a clinical setting. In this review, we characterize various animal models and behavioral tasks to provide guidelines for evaluating the therapeutic efficacy of treatment options in TBI. We provide a brief review into the systems utilized in TBI classification and provide comparisons to the animal models that have been developed. In addition, we discuss the role of behavioral tasks in evaluating outcomes associated with TBI. Our goal is to provide those in the nanotheranostic field a guide for selecting an adequate TBI animal model and behavioral task for assessment of outcomes to increase research in this field.