用于工业复杂几何形状的LES。第一部分:自动网格定义

IF 1.5 4区 工程技术 Q3 MECHANICS Journal of Turbulence Pub Date : 2023-05-28 DOI:10.1080/14685248.2023.2214399
A. Grenouilloux, J. Leparoux, V. Moureau, G. Balarac, T. Berthelon, R. Mercier, M. Bernard, P. Bénard, G. Lartigue, O. Métais
{"title":"用于工业复杂几何形状的LES。第一部分:自动网格定义","authors":"A. Grenouilloux, J. Leparoux, V. Moureau, G. Balarac, T. Berthelon, R. Mercier, M. Bernard, P. Bénard, G. Lartigue, O. Métais","doi":"10.1080/14685248.2023.2214399","DOIUrl":null,"url":null,"abstract":"With the constant increase of computational power for the past years, Computational Fluid Dynamics (CFD) has become an essential part of the design in complex industrial processes. In this context, among the scale resolving numerical methods, Large-Eddy Simulation (LES) has become a valuable tool for the simulation of complex unsteady flows. To generalise the industrial use of LES, two main limitations are identified. First, the generation of a proper mesh can be a difficult task, which often relies on user-experience. Secondly, the ‘time-to-solution’ associated with the LES approach can be prohibitive in an industrial context. In this work, these two challenges are addressed in two parts. In this Part I, an automatic procedure for mesh definition is proposed, whereas the Part II is devoted to numerical technique to reduce the LES ‘time-to-solution’. The main goal of these works is then to develop an accurate LES strategy at an optimised computational cost. Concerning the mesh definition, because LES is based on separation between resolved and modelled subgrid-scales, the quality of the computed solution is then directly linked to the quality of the mesh. However, the definition of an adequate mesh is still an issue when LES is used to predict the flow in an industrial complex geometry without a priori knowledge of the flow dynamics. This first part presents a user-independent approach for both the generation of an initial mesh and the convergence of the mesh in the LES framework. An automatic mesh convergence strategy is proposed to ensure LES accuracy. This strategy is built to guarantee a mesh-independent mean field kinetic energy budget. The mean field kinetic energy is indeed expected to be mesh independent since only turbulent scales should be unresolved in LES. The approach is validated on canonical cases, a turbulent round jet and a turbulent pipe flow. Finally, the PRECCINSTA swirl burner is considered as a representative case of complex geometry. First, an algorithm for the generation of an unstructured mesh from a STL file is proposed to generate a coarse initial mesh, before applying the mesh convergence procedure. The overall strategy including automatic first mesh generation and its automatic adaptation paves the way to use LES approach as a decision support tool for various applications, provided that the ‘time-to-solution’ is compatible with the applications constraint. A second paper, referred as Part II, is devoted to the reduction of this time.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toward the use of LES for industrial complex geometries. Part I: automatic mesh definition\",\"authors\":\"A. Grenouilloux, J. Leparoux, V. Moureau, G. Balarac, T. Berthelon, R. Mercier, M. Bernard, P. Bénard, G. Lartigue, O. Métais\",\"doi\":\"10.1080/14685248.2023.2214399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the constant increase of computational power for the past years, Computational Fluid Dynamics (CFD) has become an essential part of the design in complex industrial processes. In this context, among the scale resolving numerical methods, Large-Eddy Simulation (LES) has become a valuable tool for the simulation of complex unsteady flows. To generalise the industrial use of LES, two main limitations are identified. First, the generation of a proper mesh can be a difficult task, which often relies on user-experience. Secondly, the ‘time-to-solution’ associated with the LES approach can be prohibitive in an industrial context. In this work, these two challenges are addressed in two parts. In this Part I, an automatic procedure for mesh definition is proposed, whereas the Part II is devoted to numerical technique to reduce the LES ‘time-to-solution’. The main goal of these works is then to develop an accurate LES strategy at an optimised computational cost. Concerning the mesh definition, because LES is based on separation between resolved and modelled subgrid-scales, the quality of the computed solution is then directly linked to the quality of the mesh. However, the definition of an adequate mesh is still an issue when LES is used to predict the flow in an industrial complex geometry without a priori knowledge of the flow dynamics. This first part presents a user-independent approach for both the generation of an initial mesh and the convergence of the mesh in the LES framework. An automatic mesh convergence strategy is proposed to ensure LES accuracy. This strategy is built to guarantee a mesh-independent mean field kinetic energy budget. The mean field kinetic energy is indeed expected to be mesh independent since only turbulent scales should be unresolved in LES. The approach is validated on canonical cases, a turbulent round jet and a turbulent pipe flow. Finally, the PRECCINSTA swirl burner is considered as a representative case of complex geometry. First, an algorithm for the generation of an unstructured mesh from a STL file is proposed to generate a coarse initial mesh, before applying the mesh convergence procedure. The overall strategy including automatic first mesh generation and its automatic adaptation paves the way to use LES approach as a decision support tool for various applications, provided that the ‘time-to-solution’ is compatible with the applications constraint. A second paper, referred as Part II, is devoted to the reduction of this time.\",\"PeriodicalId\":49967,\"journal\":{\"name\":\"Journal of Turbulence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbulence\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14685248.2023.2214399\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2023.2214399","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

近年来,随着计算能力的不断提高,计算流体动力学(CFD)已成为复杂工业过程设计的重要组成部分。在此背景下,在各种尺度分解数值方法中,大涡模拟(Large-Eddy Simulation, LES)已成为模拟复杂非定常流场的重要工具。为了概括LES的工业用途,确定了两个主要限制。首先,生成合适的网格可能是一项艰巨的任务,这通常依赖于用户体验。其次,与LES方法相关的“解决方案的时间”在工业环境中可能是令人望而却步的。在这项工作中,这两个挑战将分两部分解决。在第一部分中,提出了网格定义的自动程序,而第二部分则致力于数值技术以减少LES的“求解时间”。这些工作的主要目标是在优化的计算成本下开发准确的LES策略。关于网格的定义,因为LES是基于分离的分解和建模的子网格尺度,计算解的质量直接与网格的质量挂钩。然而,当在没有流动动力学先验知识的情况下使用LES来预测工业复杂几何结构中的流动时,适当网格的定义仍然是一个问题。第一部分介绍了一种独立于用户的方法,用于生成初始网格和在LES框架中收敛网格。提出了一种自动网格收敛策略来保证LES精度。该策略的建立是为了保证网格无关的平均场动能收支。平均场动能确实期望与网格无关,因为在LES中只需要解决湍流尺度。通过典型情况、湍流圆射流和湍流管流对该方法进行了验证。最后,以PRECCINSTA涡流燃烧器为复杂几何结构的典型案例。首先,提出了一种从STL文件生成非结构化网格的算法,在应用网格收敛过程之前生成粗初始网格。整体策略包括自动第一个网格生成及其自动适应,为使用LES方法作为各种应用的决策支持工具铺平了道路,前提是“解决时间”与应用约束兼容。第二篇论文,称为第二部分,致力于减少这段时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward the use of LES for industrial complex geometries. Part I: automatic mesh definition
With the constant increase of computational power for the past years, Computational Fluid Dynamics (CFD) has become an essential part of the design in complex industrial processes. In this context, among the scale resolving numerical methods, Large-Eddy Simulation (LES) has become a valuable tool for the simulation of complex unsteady flows. To generalise the industrial use of LES, two main limitations are identified. First, the generation of a proper mesh can be a difficult task, which often relies on user-experience. Secondly, the ‘time-to-solution’ associated with the LES approach can be prohibitive in an industrial context. In this work, these two challenges are addressed in two parts. In this Part I, an automatic procedure for mesh definition is proposed, whereas the Part II is devoted to numerical technique to reduce the LES ‘time-to-solution’. The main goal of these works is then to develop an accurate LES strategy at an optimised computational cost. Concerning the mesh definition, because LES is based on separation between resolved and modelled subgrid-scales, the quality of the computed solution is then directly linked to the quality of the mesh. However, the definition of an adequate mesh is still an issue when LES is used to predict the flow in an industrial complex geometry without a priori knowledge of the flow dynamics. This first part presents a user-independent approach for both the generation of an initial mesh and the convergence of the mesh in the LES framework. An automatic mesh convergence strategy is proposed to ensure LES accuracy. This strategy is built to guarantee a mesh-independent mean field kinetic energy budget. The mean field kinetic energy is indeed expected to be mesh independent since only turbulent scales should be unresolved in LES. The approach is validated on canonical cases, a turbulent round jet and a turbulent pipe flow. Finally, the PRECCINSTA swirl burner is considered as a representative case of complex geometry. First, an algorithm for the generation of an unstructured mesh from a STL file is proposed to generate a coarse initial mesh, before applying the mesh convergence procedure. The overall strategy including automatic first mesh generation and its automatic adaptation paves the way to use LES approach as a decision support tool for various applications, provided that the ‘time-to-solution’ is compatible with the applications constraint. A second paper, referred as Part II, is devoted to the reduction of this time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Turbulence
Journal of Turbulence 物理-力学
CiteScore
3.90
自引率
5.30%
发文量
23
审稿时长
6-12 weeks
期刊介绍: Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence. JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.
期刊最新文献
A comparative study of bandpass-filter-based multi-scale methods for turbulence energy cascade On the physical structure, modelling and computation-based prediction of two-dimensional, smooth-wall turbulent boundary layers subjected to streamwise pressure gradients Large-eddy simulation of shock train in convergent-divergent nozzles with isothermal walls Uniform momentum zones in turbulent channel flow Transient energy transfer and cascade analysis for stratified turbulent channel flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1