Modbus与工业服务物联网平台的互通

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS Digital Communications and Networks Pub Date : 2024-04-01 DOI:10.1016/j.dcan.2022.09.013
Sherzod Elamanov , Hyeonseo Son , Bob Flynn , Seong Ki Yoo , Naqqash Dilshad , JaeSeung Song
{"title":"Modbus与工业服务物联网平台的互通","authors":"Sherzod Elamanov ,&nbsp;Hyeonseo Son ,&nbsp;Bob Flynn ,&nbsp;Seong Ki Yoo ,&nbsp;Naqqash Dilshad ,&nbsp;JaeSeung Song","doi":"10.1016/j.dcan.2022.09.013","DOIUrl":null,"url":null,"abstract":"<div><p>In the era of rapid development of Internet of Things (IoT), numerous machine-to-machine technologies have been applied to the industrial domain. Due to the divergence of IoT solutions, the industry is faced with a need to apply various technologies for automation and control. This fact leads to a demand for an establishing interworking mechanism which would allow smooth interoperability between heterogeneous devices. One of the major protocols widely used today in industrial electronic devices is Modbus. However, data generated by Modbus devices cannot be understood by IoT applications using different protocols, so it should be applied in a couple with an IoT service layer platform. oneM2M, a global IoT standard, can play the role of interconnecting various protocols, as it provides flexible tools suitable for building an interworking framework for industrial services. Therefore, in this paper, we propose an interworking architecture between devices working on the Modbus protocol and an IoT platform implemented based on oneM2M standards. In the proposed architecture, we introduce the way to model Modbus data as oneM2M resources, rules to map them to each other, procedures required to establish interoperable communication, and optimization methods for this architecture. We analyze our solution and provide an evaluation by implementing it based on a solar power management use case. The results demonstrate that our model is feasible and can be applied to real case scenarios.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864822001882/pdfft?md5=7b7bc845989426f1fb38bc11af73c0a8&pid=1-s2.0-S2352864822001882-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Interworking between Modbus and internet of things platform for industrial services\",\"authors\":\"Sherzod Elamanov ,&nbsp;Hyeonseo Son ,&nbsp;Bob Flynn ,&nbsp;Seong Ki Yoo ,&nbsp;Naqqash Dilshad ,&nbsp;JaeSeung Song\",\"doi\":\"10.1016/j.dcan.2022.09.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the era of rapid development of Internet of Things (IoT), numerous machine-to-machine technologies have been applied to the industrial domain. Due to the divergence of IoT solutions, the industry is faced with a need to apply various technologies for automation and control. This fact leads to a demand for an establishing interworking mechanism which would allow smooth interoperability between heterogeneous devices. One of the major protocols widely used today in industrial electronic devices is Modbus. However, data generated by Modbus devices cannot be understood by IoT applications using different protocols, so it should be applied in a couple with an IoT service layer platform. oneM2M, a global IoT standard, can play the role of interconnecting various protocols, as it provides flexible tools suitable for building an interworking framework for industrial services. Therefore, in this paper, we propose an interworking architecture between devices working on the Modbus protocol and an IoT platform implemented based on oneM2M standards. In the proposed architecture, we introduce the way to model Modbus data as oneM2M resources, rules to map them to each other, procedures required to establish interoperable communication, and optimization methods for this architecture. We analyze our solution and provide an evaluation by implementing it based on a solar power management use case. The results demonstrate that our model is feasible and can be applied to real case scenarios.</p></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352864822001882/pdfft?md5=7b7bc845989426f1fb38bc11af73c0a8&pid=1-s2.0-S2352864822001882-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864822001882\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822001882","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在物联网(IoT)飞速发展的时代,众多机器对机器技术被应用于工业领域。由于物联网解决方案多种多样,工业领域需要应用各种技术来实现自动化和控制。这就需要建立一种互通机制,使异构设备之间能够顺利实现互操作。如今,Modbus 是工业电子设备中广泛使用的主要协议之一。然而,使用不同协议的物联网应用无法理解 Modbus 设备生成的数据,因此应将其与物联网服务层平台结合起来使用。因此,我们在本文中提出了一种基于 Modbus 协议的设备与基于 oneM2M 标准的物联网平台之间的互通架构。在提议的架构中,我们介绍了将 Modbus 数据建模为 oneM2M 资源的方法、将它们相互映射的规则、建立可互操作通信所需的程序以及该架构的优化方法。我们分析了我们的解决方案,并通过基于太阳能电源管理用例的实施进行了评估。结果表明,我们的模型是可行的,并可应用于实际场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interworking between Modbus and internet of things platform for industrial services

In the era of rapid development of Internet of Things (IoT), numerous machine-to-machine technologies have been applied to the industrial domain. Due to the divergence of IoT solutions, the industry is faced with a need to apply various technologies for automation and control. This fact leads to a demand for an establishing interworking mechanism which would allow smooth interoperability between heterogeneous devices. One of the major protocols widely used today in industrial electronic devices is Modbus. However, data generated by Modbus devices cannot be understood by IoT applications using different protocols, so it should be applied in a couple with an IoT service layer platform. oneM2M, a global IoT standard, can play the role of interconnecting various protocols, as it provides flexible tools suitable for building an interworking framework for industrial services. Therefore, in this paper, we propose an interworking architecture between devices working on the Modbus protocol and an IoT platform implemented based on oneM2M standards. In the proposed architecture, we introduce the way to model Modbus data as oneM2M resources, rules to map them to each other, procedures required to establish interoperable communication, and optimization methods for this architecture. We analyze our solution and provide an evaluation by implementing it based on a solar power management use case. The results demonstrate that our model is feasible and can be applied to real case scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
期刊最新文献
Editorial Board Scheduling optimization for UAV communication coverage using virtual force-based PSO model Hybrid millimeter wave heterogeneous networks with spatially correlated user equipment A novel hybrid authentication protocol utilizing lattice-based cryptography for IoT devices in fog networks Data-driven human and bot recognition from web activity logs based on hybrid learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1