优化建筑能源效率的数据包络分析和分析软件

Pub Date : 2022-01-01 DOI:10.4018/ijban.290404
Z. Radovilsky, P. Taneja, P. Sahay
{"title":"优化建筑能源效率的数据包络分析和分析软件","authors":"Z. Radovilsky, P. Taneja, P. Sahay","doi":"10.4018/ijban.290404","DOIUrl":null,"url":null,"abstract":"This research was motivated by the need to identify the most effective Data Envelopment Analysis (DEA) model and associated data analytics software for measuring, comparing, and optimizing building energy efficiency. By analyzing literature sources, the authors identified several gaps in the existing DEA approaches that were resolved in this research. In particular, the authors introduced energy efficiency indices like energy consumption per square foot and per occupant as a part of DEA models’ outputs. They also utilized inverse and min-max normalized output variables to resolve the issue of undesirable outputs in the DEA models. The evaluation of these models was done by utilizing various data analytics software including Python, R, Matlab, and Excel. The authors identified that the CCR DEA model with inverse output variables provided the most reliable energy efficiency scores, and the Python’s PyDEA package produces the most consistent efficiency scores while running the CCR model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Envelopment Analysis and Analytics Software for Optimizing Building Energy Efficiency\",\"authors\":\"Z. Radovilsky, P. Taneja, P. Sahay\",\"doi\":\"10.4018/ijban.290404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research was motivated by the need to identify the most effective Data Envelopment Analysis (DEA) model and associated data analytics software for measuring, comparing, and optimizing building energy efficiency. By analyzing literature sources, the authors identified several gaps in the existing DEA approaches that were resolved in this research. In particular, the authors introduced energy efficiency indices like energy consumption per square foot and per occupant as a part of DEA models’ outputs. They also utilized inverse and min-max normalized output variables to resolve the issue of undesirable outputs in the DEA models. The evaluation of these models was done by utilizing various data analytics software including Python, R, Matlab, and Excel. The authors identified that the CCR DEA model with inverse output variables provided the most reliable energy efficiency scores, and the Python’s PyDEA package produces the most consistent efficiency scores while running the CCR model.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijban.290404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijban.290404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究的动机是需要确定最有效的数据包络分析(DEA)模型和相关的数据分析软件,用于测量、比较和优化建筑能效。通过分析文献来源,作者发现了现有DEA方法中的几个差距,这些差距在本研究中得到了解决。特别是,作者引入了能源效率指数,如每平方英尺和每个居住者的能源消耗,作为DEA模型输出的一部分。他们还利用反向和最小-最大归一化输出变量来解决DEA模型中不期望的输出问题。通过使用各种数据分析软件,包括Python、R、Matlab和Excel,对这些模型进行了评估。作者发现,具有反向输出变量的CCR DEA模型提供了最可靠的能效分数,Python的PyDEA包在运行CCR模型时产生了最一致的效率分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Data Envelopment Analysis and Analytics Software for Optimizing Building Energy Efficiency
This research was motivated by the need to identify the most effective Data Envelopment Analysis (DEA) model and associated data analytics software for measuring, comparing, and optimizing building energy efficiency. By analyzing literature sources, the authors identified several gaps in the existing DEA approaches that were resolved in this research. In particular, the authors introduced energy efficiency indices like energy consumption per square foot and per occupant as a part of DEA models’ outputs. They also utilized inverse and min-max normalized output variables to resolve the issue of undesirable outputs in the DEA models. The evaluation of these models was done by utilizing various data analytics software including Python, R, Matlab, and Excel. The authors identified that the CCR DEA model with inverse output variables provided the most reliable energy efficiency scores, and the Python’s PyDEA package produces the most consistent efficiency scores while running the CCR model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1