水处理制药行业硬度预测机器学习模型的开发

Al Ansor Siahaan, M. Asrol
{"title":"水处理制药行业硬度预测机器学习模型的开发","authors":"Al Ansor Siahaan, M. Asrol","doi":"10.24867/ijiem-2023-2-329","DOIUrl":null,"url":null,"abstract":"[1] D. Askenaizer and M. Watson Engineers, “Drinking Water Quality and Treatment,” 2001. [2] S. Sulistyani, A. Fillaeli, U. Negeri, and Y. K. Malang, “Uji kesadahan air tanah di daerah sekitar pantai kecamatan rembang propinsi jawa tengah,” 2012. [3] H. Elfil and A. Hannachi, “Reconsidering water scaling tendency assessment,” AIChE Journal, vol. 52, no. 10, pp. 3583–3591, Oct. 2006, doi: 10.1002/aic.10965. [4] A. Sharjeel, S. Anwar, A. Nasir, and H. Rashid, “Design, development and performance of optimum water softener,” Earth Sciences Pakistan, vol. 3, no. 1, pp. 23–28, Jan. 2019, doi: 10.26480/esp.01.2019.23.28. [5] A. Sircar, K. Yadav, K. Rayavarapu, N. Bist, and H. Oza, “Application of machine learning and artificial intelligence in oil and gas industry,” Petroleum Research, vol. 6, no. 4. KeAi Publishing Communications Ltd., pp. 379–391, Dec. 01, 2021. doi: 10.1016/j. ptlrs.2021.05.009. [6] J. Jawad, A. H. Hawari, and S. Zaidi, “Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux,” Desalination, vol. 484, Jun. 2020, doi: 10.1016/j.desal.2020.114427. [7] S. Singha, S. Pasupuleti, S. S. Singha, R. Singh, and S. Kumar, “Prediction of groundwater quality using efficient machine learning technique,” Chemosphere, vol. 276, Aug. 2021, doi: 10.1016/j.chemosphere.2021.130265. [8] A. Bannoud, “The electrochemical way of removing the hardness of water,” 1993. [9] A. Mahvi, N. Dariush, V. Forugh, and S. Nazmara, “Teawaste as An Adsorbent for Heavy Metal Removal from Industrial Wastewaters,” Am. J. Appl. Sci., vol. 2, Jan. 2005, doi: 10.3844/ajassp.2005.372.375. [10] C. C. Aggarwal, Neural Networks and Deep Learning. Springer International Publishing, 2018. doi: 10.1007/978-3-319-94463-0. [11] P. Goyal, S. Pandey, and K. Jain, “Unfolding Recurrent Neural Networks,” in Deep Learning for Natural Language Processing, Apress, 2018, pp. 119–168. doi: 10.1007/978-1-4842-3685-7_3. [12] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, “LSTM network: A deep learning approach for Short-term traffic forecast,” IET Intelligent Transport Systems, vol. 11, no. 2, pp. 68–75, Mar. 2017, doi: 10.1049/iet-its.2016.0208. [13] A. Saxena and T. R. Sukumar, “Predicting bitcoin price using lstm And Compare its predictability with arima model,” Int. J. Pure Appl. Math., vol. 119, no. 17, pp. 2591–2600, Feb. 2018, doi: 10.13140/RG.2.2.15847.57766. [14] N. K. Manaswi, “RNN and LSTM BT Deep Learning with Applications Using Python : Chatbots and Face, Object, and Speech Recognition With TensorFlow and Keras,” N. K. Manaswi, Ed. Berkeley, CA: Apress, 2018, pp. 115–126, doi: 10.1007/978-14842-3516-4_9. [15] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network,” Phys. D Nonlinear Phenom., vol. 404, p. 132306, 2020, doi: 10.1016/j.physd.2019.132306. [16] H. Chung and K. S. Shin, “Genetic algorithm-optimized long short-term memory network for stock market prediction,” Sustainability (Switzerland), vol. 10, no. 10, Oct. 2018, doi: 10.3390/su10103765. [17] R. Couronné, P. Probst, and A. L. Boulesteix, “Random forest versus logistic regression: A large-scale benchmark experiment,” BMC Bioinformatics, vol. 19, no. 1, Jul. 2018, doi: 10.1186/s12859-018-2264-5. [18] L. Breiman, “Random Forests,” 2001. [19] G. Shmueli, P. C. Bruce, I. Yahav, N. R. Patel, and K. C. Lichtendahl Jr., Data mining for business analytics: concepts, techniques, and applications in R. Wiley, 2017. [20] D. A. Lind, W. G. Marchal, and S. A. Wathen, Statistical techniques in business & economics. McGraw-Hill, 2017. References Development of a Machine Learning Model for Predicting Hardness in the Water Treatment Pharmaceutical Industry","PeriodicalId":38526,"journal":{"name":"International Journal of Industrial Engineering and Management","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Machine Learning Model for Predicting Hardness in the Water Treatment Pharmaceutical Industry\",\"authors\":\"Al Ansor Siahaan, M. Asrol\",\"doi\":\"10.24867/ijiem-2023-2-329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"[1] D. Askenaizer and M. Watson Engineers, “Drinking Water Quality and Treatment,” 2001. [2] S. Sulistyani, A. Fillaeli, U. Negeri, and Y. K. Malang, “Uji kesadahan air tanah di daerah sekitar pantai kecamatan rembang propinsi jawa tengah,” 2012. [3] H. Elfil and A. Hannachi, “Reconsidering water scaling tendency assessment,” AIChE Journal, vol. 52, no. 10, pp. 3583–3591, Oct. 2006, doi: 10.1002/aic.10965. [4] A. Sharjeel, S. Anwar, A. Nasir, and H. Rashid, “Design, development and performance of optimum water softener,” Earth Sciences Pakistan, vol. 3, no. 1, pp. 23–28, Jan. 2019, doi: 10.26480/esp.01.2019.23.28. [5] A. Sircar, K. Yadav, K. Rayavarapu, N. Bist, and H. Oza, “Application of machine learning and artificial intelligence in oil and gas industry,” Petroleum Research, vol. 6, no. 4. KeAi Publishing Communications Ltd., pp. 379–391, Dec. 01, 2021. doi: 10.1016/j. ptlrs.2021.05.009. [6] J. Jawad, A. H. Hawari, and S. Zaidi, “Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux,” Desalination, vol. 484, Jun. 2020, doi: 10.1016/j.desal.2020.114427. [7] S. Singha, S. Pasupuleti, S. S. Singha, R. Singh, and S. Kumar, “Prediction of groundwater quality using efficient machine learning technique,” Chemosphere, vol. 276, Aug. 2021, doi: 10.1016/j.chemosphere.2021.130265. [8] A. Bannoud, “The electrochemical way of removing the hardness of water,” 1993. [9] A. Mahvi, N. Dariush, V. Forugh, and S. Nazmara, “Teawaste as An Adsorbent for Heavy Metal Removal from Industrial Wastewaters,” Am. J. Appl. Sci., vol. 2, Jan. 2005, doi: 10.3844/ajassp.2005.372.375. [10] C. C. Aggarwal, Neural Networks and Deep Learning. Springer International Publishing, 2018. doi: 10.1007/978-3-319-94463-0. [11] P. Goyal, S. Pandey, and K. Jain, “Unfolding Recurrent Neural Networks,” in Deep Learning for Natural Language Processing, Apress, 2018, pp. 119–168. doi: 10.1007/978-1-4842-3685-7_3. [12] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, “LSTM network: A deep learning approach for Short-term traffic forecast,” IET Intelligent Transport Systems, vol. 11, no. 2, pp. 68–75, Mar. 2017, doi: 10.1049/iet-its.2016.0208. [13] A. Saxena and T. R. Sukumar, “Predicting bitcoin price using lstm And Compare its predictability with arima model,” Int. J. Pure Appl. Math., vol. 119, no. 17, pp. 2591–2600, Feb. 2018, doi: 10.13140/RG.2.2.15847.57766. [14] N. K. Manaswi, “RNN and LSTM BT Deep Learning with Applications Using Python : Chatbots and Face, Object, and Speech Recognition With TensorFlow and Keras,” N. K. Manaswi, Ed. Berkeley, CA: Apress, 2018, pp. 115–126, doi: 10.1007/978-14842-3516-4_9. [15] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network,” Phys. D Nonlinear Phenom., vol. 404, p. 132306, 2020, doi: 10.1016/j.physd.2019.132306. [16] H. Chung and K. S. Shin, “Genetic algorithm-optimized long short-term memory network for stock market prediction,” Sustainability (Switzerland), vol. 10, no. 10, Oct. 2018, doi: 10.3390/su10103765. [17] R. Couronné, P. Probst, and A. L. Boulesteix, “Random forest versus logistic regression: A large-scale benchmark experiment,” BMC Bioinformatics, vol. 19, no. 1, Jul. 2018, doi: 10.1186/s12859-018-2264-5. [18] L. Breiman, “Random Forests,” 2001. [19] G. Shmueli, P. C. Bruce, I. Yahav, N. R. Patel, and K. C. Lichtendahl Jr., Data mining for business analytics: concepts, techniques, and applications in R. Wiley, 2017. [20] D. A. Lind, W. G. Marchal, and S. A. Wathen, Statistical techniques in business & economics. McGraw-Hill, 2017. References Development of a Machine Learning Model for Predicting Hardness in the Water Treatment Pharmaceutical Industry\",\"PeriodicalId\":38526,\"journal\":{\"name\":\"International Journal of Industrial Engineering and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Industrial Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24867/ijiem-2023-2-329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24867/ijiem-2023-2-329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

[10] D. Askenaizer和M. Watson Engineers,“饮用水质量和处理”,2001。[10]李建军,刘建军,刘建军,“空气质量与空气质量的关系”,《中国环境科学》,2012。[10]李建军,“水结垢倾向评价的再思考”,《中国给水排水》,第2期。10, pp. 3583-3591, Oct. 2006, doi: 10.1002/aic.10965。[10]王晓明,王晓明,“水软化剂的设计、开发与性能研究”,《地球科学》第3卷,第2期。2019年1月,第23-28页,doi: 10.26480/esp.01.2019.23.28。[10] A. Sircar, K. Yadav, K. Rayavarapu, N. Bist, H. Oza,“机器学习和人工智能在石油和天然气工业中的应用”,石油研究,第6卷,第6期。4. 科爱出版传播有限公司,379-391页,2021年12月1日。doi: 10.1016 / j。ptlrs.2021.05.009。[10]王晓明,王晓明,王晓明,“基于人工神经网络(ANN)的海水正向渗透模型研究”,《海洋工程学报》,2014年6月,doi: 10.3969 / j.i ssn . 1006 - 1007。[10] S. Singha, S. Pasupuleti, S. S. Singha, R. Singh, S. Kumar,“基于高效机器学习技术的地下水水质预测”,环境科学,vol. 276, Aug. 2021, doi: 10.1016/j.c chemosphere.2021.130265。[10] A. Bannoud,“电化学方法去除水的硬度”,1993。[10]张晓明,张晓明,张晓明,“工业废水中重金属的吸附研究”,环境科学与技术,2011。j:。科学。, vol. 2, 2005年1月,doi: 10.3844/ ajasp .2005.372.375。[10] C. C. Aggarwal,神经网络与深度学习。b施普林格国际出版,2018。doi: 10.1007 / 978-3-319-94463-0。[10] P. Goyal, S. Pandey和K. Jain,“展开递归神经网络”,《自然语言处理的深度学习》,Apress, 2018,第119-168页。doi: 10.1007 / 978 - 1 - 4842 - 3685 - 7 - _3。[10]赵振宇,陈伟,吴晓霞,刘建军,“基于深度学习的LSTM网络短期交通预测方法”,智能交通系统,vol. 11, no. 1。2, pp. 68-75, 2017年3月,doi: 10.1049/ et-its.2016.0208。[10] A. Saxena和T. R. Sukumar,“使用lstm预测比特币价格并将其可预测性与arima模型进行比较”,Int。纯苹果。数学。,第119卷,第119号。17, pp. 2591 - 26,2018, doi: 10.13140/RG.2.2.15847.57766。N. K. Manaswi,“RNN和LSTM BT深度学习与使用Python的应用:Chatbots和Face, Object, and Speech Recognition with TensorFlow and Keras,”N. K. Manaswi, Ed. Berkeley, CA: Apress, 2018, pp. 115-126, doi: 10.1007/978-14842-3516-4_9。[10] A. Sherstinsky,“递归神经网络(RNN)和长短期记忆(LSTM)网络的基础”,物理学报。D非线性现象。中国科学,第404卷,第132306页,2020,doi: 10.1016/j.p yphys.2019.132306。[10]郑宏祥,“基于遗传算法优化的长短期记忆网络在股票市场预测中的应用”,vol. 10, no. 10。2018年10月10日,doi: 10.3390/su10103765。[10]李建军,李建军,“随机森林与逻辑回归的关系:一个大规模的基准实验”,《生物信息学》vol. 19, no. 1。2018年7月1日,doi: 10.1186/s12859-018-2264-5。[18] L. Breiman,《随机森林》,2001。[10]杨建军,杨建军,李建军,基于数据挖掘的商业分析:概念、技术和应用[j] .计算机科学与技术,2017。[10]林志刚,王志刚,王志刚,商业与经济的统计技术。麦格劳-希尔,2017年。水处理制药行业硬度预测机器学习模型的建立
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a Machine Learning Model for Predicting Hardness in the Water Treatment Pharmaceutical Industry
[1] D. Askenaizer and M. Watson Engineers, “Drinking Water Quality and Treatment,” 2001. [2] S. Sulistyani, A. Fillaeli, U. Negeri, and Y. K. Malang, “Uji kesadahan air tanah di daerah sekitar pantai kecamatan rembang propinsi jawa tengah,” 2012. [3] H. Elfil and A. Hannachi, “Reconsidering water scaling tendency assessment,” AIChE Journal, vol. 52, no. 10, pp. 3583–3591, Oct. 2006, doi: 10.1002/aic.10965. [4] A. Sharjeel, S. Anwar, A. Nasir, and H. Rashid, “Design, development and performance of optimum water softener,” Earth Sciences Pakistan, vol. 3, no. 1, pp. 23–28, Jan. 2019, doi: 10.26480/esp.01.2019.23.28. [5] A. Sircar, K. Yadav, K. Rayavarapu, N. Bist, and H. Oza, “Application of machine learning and artificial intelligence in oil and gas industry,” Petroleum Research, vol. 6, no. 4. KeAi Publishing Communications Ltd., pp. 379–391, Dec. 01, 2021. doi: 10.1016/j. ptlrs.2021.05.009. [6] J. Jawad, A. H. Hawari, and S. Zaidi, “Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux,” Desalination, vol. 484, Jun. 2020, doi: 10.1016/j.desal.2020.114427. [7] S. Singha, S. Pasupuleti, S. S. Singha, R. Singh, and S. Kumar, “Prediction of groundwater quality using efficient machine learning technique,” Chemosphere, vol. 276, Aug. 2021, doi: 10.1016/j.chemosphere.2021.130265. [8] A. Bannoud, “The electrochemical way of removing the hardness of water,” 1993. [9] A. Mahvi, N. Dariush, V. Forugh, and S. Nazmara, “Teawaste as An Adsorbent for Heavy Metal Removal from Industrial Wastewaters,” Am. J. Appl. Sci., vol. 2, Jan. 2005, doi: 10.3844/ajassp.2005.372.375. [10] C. C. Aggarwal, Neural Networks and Deep Learning. Springer International Publishing, 2018. doi: 10.1007/978-3-319-94463-0. [11] P. Goyal, S. Pandey, and K. Jain, “Unfolding Recurrent Neural Networks,” in Deep Learning for Natural Language Processing, Apress, 2018, pp. 119–168. doi: 10.1007/978-1-4842-3685-7_3. [12] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, “LSTM network: A deep learning approach for Short-term traffic forecast,” IET Intelligent Transport Systems, vol. 11, no. 2, pp. 68–75, Mar. 2017, doi: 10.1049/iet-its.2016.0208. [13] A. Saxena and T. R. Sukumar, “Predicting bitcoin price using lstm And Compare its predictability with arima model,” Int. J. Pure Appl. Math., vol. 119, no. 17, pp. 2591–2600, Feb. 2018, doi: 10.13140/RG.2.2.15847.57766. [14] N. K. Manaswi, “RNN and LSTM BT Deep Learning with Applications Using Python : Chatbots and Face, Object, and Speech Recognition With TensorFlow and Keras,” N. K. Manaswi, Ed. Berkeley, CA: Apress, 2018, pp. 115–126, doi: 10.1007/978-14842-3516-4_9. [15] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network,” Phys. D Nonlinear Phenom., vol. 404, p. 132306, 2020, doi: 10.1016/j.physd.2019.132306. [16] H. Chung and K. S. Shin, “Genetic algorithm-optimized long short-term memory network for stock market prediction,” Sustainability (Switzerland), vol. 10, no. 10, Oct. 2018, doi: 10.3390/su10103765. [17] R. Couronné, P. Probst, and A. L. Boulesteix, “Random forest versus logistic regression: A large-scale benchmark experiment,” BMC Bioinformatics, vol. 19, no. 1, Jul. 2018, doi: 10.1186/s12859-018-2264-5. [18] L. Breiman, “Random Forests,” 2001. [19] G. Shmueli, P. C. Bruce, I. Yahav, N. R. Patel, and K. C. Lichtendahl Jr., Data mining for business analytics: concepts, techniques, and applications in R. Wiley, 2017. [20] D. A. Lind, W. G. Marchal, and S. A. Wathen, Statistical techniques in business & economics. McGraw-Hill, 2017. References Development of a Machine Learning Model for Predicting Hardness in the Water Treatment Pharmaceutical Industry
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Industrial Engineering and Management
International Journal of Industrial Engineering and Management Business, Management and Accounting-Business, Management and Accounting (miscellaneous)
CiteScore
5.00
自引率
17.20%
发文量
22
审稿时长
21 weeks
期刊介绍: International Journal of Industrial Engineering and Management (IJIEM) is an interdisciplinary international academic journal published quarterly. IJIEM serves researchers in the industrial engineering, manufacturing engineering and management fields. The major aims are: To collect and disseminate information on new and advanced developments in the field of industrial engineering and management; To encourage further progress in engineering and management methodology and applications; To cover the range of engineering and management development and usage in their use of managerial policies and strategies. Thus, IJIEM invites the submission of original, high quality, theoretical and application-oriented research; general surveys and critical reviews; educational or training articles including case studies, in the field of industrial engineering and management. The journal covers all aspects of industrial engineering and management, particularly: -Smart Manufacturing & Industry 4.0, -Production Systems, -Service Engineering, -Automation, Robotics and Mechatronics, -Information and Communication Systems, -ICT for Collaborative Manufacturing, -Quality, Maintenance and Logistics, -Safety and Reliability, -Organization and Human Resources, -Engineering Management, -Entrepreneurship and Innovation, -Project Management, -Marketing and Commerce, -Investment, Finance and Accounting, -Insurance Engineering and Management, -Media Engineering and Management, -Education and Practices in Industrial Engineering and Management.
期刊最新文献
The Technology Analysis model - TAM 4.0 for implementation of Industry 4.0 Joint optimization of production, maintenance, and quality: A review and research trends Lean Management in the Banking Industry: A Case Study Relationship between project success factors, project success criteria and project success in SME: Evidence from selected European transitional economies Using Index Function and Artificial Intelligence to assess Sustainability: A Bibliometric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1