K. Ning, T. Zhou, C. Jiang, WU H.M., J. Jiang, J. Chen, Y. El-Kassaby, M. Y
{"title":"白卫矛叶片再生快速高效繁殖系统","authors":"K. Ning, T. Zhou, C. Jiang, WU H.M., J. Jiang, J. Chen, Y. El-Kassaby, M. Y","doi":"10.32615/BP.2020.166","DOIUrl":null,"url":null,"abstract":"Rapid propagation of plants by tissue culture is of great significance for large-scale production, molecular genetics research, and breeding. Currently, a rapid and high-efficient tissue culture protocol for Euonymus bungeanus is needed. To develop a propagation system for this species, we established a new regeneration system from leaves. Callus formation was induced on Murashige and Skoog (MS) medium supplemented with 0.5 mg dm-3 6-benzylaminopurine (6-BA) and 0.5 mg dm-3 α-naphthalene acetic acid (NAA) and the induction rate almost reached 100 % under red radiation within 21 d. The medium for proliferation of adventitious buds comprised of MS medium with 1.0 mg dm-3 6-BA and 0.5 mg dm-3 NAA, and the induction rate within 20 d nearly reached 100 %. When, the adventitious buds were transferred to the rooting medium containing 1/2MS, 2.0 mg dm-3 indole-3-butyric acid (IBA), and 0.05 mg dm-3 NAA, adventitious root formation was achieved within 20 d. Collectively, the rapid and high-efficient regeneration system from E. bungeanus leaves was established, providing useful references for effective mass propagation and it could serve as an enabling technology for future genetic engineering.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rapid and efficient leaf regeneration propagation system for Euonymus bungeanus\",\"authors\":\"K. Ning, T. Zhou, C. Jiang, WU H.M., J. Jiang, J. Chen, Y. El-Kassaby, M. Y\",\"doi\":\"10.32615/BP.2020.166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid propagation of plants by tissue culture is of great significance for large-scale production, molecular genetics research, and breeding. Currently, a rapid and high-efficient tissue culture protocol for Euonymus bungeanus is needed. To develop a propagation system for this species, we established a new regeneration system from leaves. Callus formation was induced on Murashige and Skoog (MS) medium supplemented with 0.5 mg dm-3 6-benzylaminopurine (6-BA) and 0.5 mg dm-3 α-naphthalene acetic acid (NAA) and the induction rate almost reached 100 % under red radiation within 21 d. The medium for proliferation of adventitious buds comprised of MS medium with 1.0 mg dm-3 6-BA and 0.5 mg dm-3 NAA, and the induction rate within 20 d nearly reached 100 %. When, the adventitious buds were transferred to the rooting medium containing 1/2MS, 2.0 mg dm-3 indole-3-butyric acid (IBA), and 0.05 mg dm-3 NAA, adventitious root formation was achieved within 20 d. Collectively, the rapid and high-efficient regeneration system from E. bungeanus leaves was established, providing useful references for effective mass propagation and it could serve as an enabling technology for future genetic engineering.\",\"PeriodicalId\":8912,\"journal\":{\"name\":\"Biologia Plantarum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/BP.2020.166\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/BP.2020.166","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Rapid and efficient leaf regeneration propagation system for Euonymus bungeanus
Rapid propagation of plants by tissue culture is of great significance for large-scale production, molecular genetics research, and breeding. Currently, a rapid and high-efficient tissue culture protocol for Euonymus bungeanus is needed. To develop a propagation system for this species, we established a new regeneration system from leaves. Callus formation was induced on Murashige and Skoog (MS) medium supplemented with 0.5 mg dm-3 6-benzylaminopurine (6-BA) and 0.5 mg dm-3 α-naphthalene acetic acid (NAA) and the induction rate almost reached 100 % under red radiation within 21 d. The medium for proliferation of adventitious buds comprised of MS medium with 1.0 mg dm-3 6-BA and 0.5 mg dm-3 NAA, and the induction rate within 20 d nearly reached 100 %. When, the adventitious buds were transferred to the rooting medium containing 1/2MS, 2.0 mg dm-3 indole-3-butyric acid (IBA), and 0.05 mg dm-3 NAA, adventitious root formation was achieved within 20 d. Collectively, the rapid and high-efficient regeneration system from E. bungeanus leaves was established, providing useful references for effective mass propagation and it could serve as an enabling technology for future genetic engineering.
期刊介绍:
BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.