Zhong Meipeng, J. Yuan, W. Yao, Chen Zhixiang, Zhongdian Chen
{"title":"超声振动加工中超声喇叭的设计与仿真","authors":"Zhong Meipeng, J. Yuan, W. Yao, Chen Zhixiang, Zhongdian Chen","doi":"10.1504/IJNM.2018.10012496","DOIUrl":null,"url":null,"abstract":"Ultrasonic horns are also called ultrasonic shift levers. They magnify ultrasonic vibration amplitude to meet the requirements of ultrasonic machining. To improve the efficiency of ultrasonic grinding, reduce the connecting parts of the lever, and reduce internal stress, the amplitude of the ultrasonic vibration process is defined in this study. The amplitude of the stress and modal simulation was determined using ANSYS was used as the simulation system for ultrasonic horn deformation. The stress and displacement at the end of the ultrasonic horns are the highest; however, the displacement at the node position of the flange is almost zero. The maximum displacement is 14.893 µm, and the minimum displacement is close to zero. Ultrasonic horns in ultrasonic vibration machining meet the requirements of use. It is proved in theory that the performance of the ultrasonic system is reliable and the design is reasonable.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":"14 1","pages":"397"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and simulation of ultrasonic horns in ultrasonic vibration machining\",\"authors\":\"Zhong Meipeng, J. Yuan, W. Yao, Chen Zhixiang, Zhongdian Chen\",\"doi\":\"10.1504/IJNM.2018.10012496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasonic horns are also called ultrasonic shift levers. They magnify ultrasonic vibration amplitude to meet the requirements of ultrasonic machining. To improve the efficiency of ultrasonic grinding, reduce the connecting parts of the lever, and reduce internal stress, the amplitude of the ultrasonic vibration process is defined in this study. The amplitude of the stress and modal simulation was determined using ANSYS was used as the simulation system for ultrasonic horn deformation. The stress and displacement at the end of the ultrasonic horns are the highest; however, the displacement at the node position of the flange is almost zero. The maximum displacement is 14.893 µm, and the minimum displacement is close to zero. Ultrasonic horns in ultrasonic vibration machining meet the requirements of use. It is proved in theory that the performance of the ultrasonic system is reliable and the design is reasonable.\",\"PeriodicalId\":14170,\"journal\":{\"name\":\"International Journal of Nanomanufacturing\",\"volume\":\"14 1\",\"pages\":\"397\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNM.2018.10012496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2018.10012496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Design and simulation of ultrasonic horns in ultrasonic vibration machining
Ultrasonic horns are also called ultrasonic shift levers. They magnify ultrasonic vibration amplitude to meet the requirements of ultrasonic machining. To improve the efficiency of ultrasonic grinding, reduce the connecting parts of the lever, and reduce internal stress, the amplitude of the ultrasonic vibration process is defined in this study. The amplitude of the stress and modal simulation was determined using ANSYS was used as the simulation system for ultrasonic horn deformation. The stress and displacement at the end of the ultrasonic horns are the highest; however, the displacement at the node position of the flange is almost zero. The maximum displacement is 14.893 µm, and the minimum displacement is close to zero. Ultrasonic horns in ultrasonic vibration machining meet the requirements of use. It is proved in theory that the performance of the ultrasonic system is reliable and the design is reasonable.