Sneha N Naik, Roberta Forlano, Pinelopi Manousou, Robert Goldin, Elsa D Angelini
{"title":"基于多实例深度学习的天狼星红组织纤维化严重程度评分","authors":"Sneha N Naik, Roberta Forlano, Pinelopi Manousou, Robert Goldin, Elsa D Angelini","doi":"10.1017/S2633903X23000144","DOIUrl":null,"url":null,"abstract":"<p><p>Non-alcoholic fatty liver disease (NAFLD) is now the leading cause of chronic liver disease, affecting approximately 30% of people worldwide. Histopathology reading of fibrosis patterns is crucial to diagnosing NAFLD. In particular, separating mild from severe stages corresponds to a critical transition as it correlates with clinical outcomes. Deep Learning for digitized histopathology whole-slide images (WSIs) can reduce high inter- and intra-rater variability. We demonstrate a novel solution to score fibrosis severity on a retrospective cohort of 152 Sirius-Red WSIs, with fibrosis stage annotated at slide level by an expert pathologist. We exploit multiple instance learning and multiple-inferences to address the sparsity of pathological signs. We achieved an accuracy of , an F1 score of and an AUC of . These results set new state-of-the-art benchmarks for this application.</p>","PeriodicalId":72371,"journal":{"name":"Biological imaging","volume":" ","pages":"e17"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951930/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fibrosis severity scoring on Sirius red histology with multiple-instance deep learning.\",\"authors\":\"Sneha N Naik, Roberta Forlano, Pinelopi Manousou, Robert Goldin, Elsa D Angelini\",\"doi\":\"10.1017/S2633903X23000144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-alcoholic fatty liver disease (NAFLD) is now the leading cause of chronic liver disease, affecting approximately 30% of people worldwide. Histopathology reading of fibrosis patterns is crucial to diagnosing NAFLD. In particular, separating mild from severe stages corresponds to a critical transition as it correlates with clinical outcomes. Deep Learning for digitized histopathology whole-slide images (WSIs) can reduce high inter- and intra-rater variability. We demonstrate a novel solution to score fibrosis severity on a retrospective cohort of 152 Sirius-Red WSIs, with fibrosis stage annotated at slide level by an expert pathologist. We exploit multiple instance learning and multiple-inferences to address the sparsity of pathological signs. We achieved an accuracy of , an F1 score of and an AUC of . These results set new state-of-the-art benchmarks for this application.</p>\",\"PeriodicalId\":72371,\"journal\":{\"name\":\"Biological imaging\",\"volume\":\" \",\"pages\":\"e17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951930/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S2633903X23000144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S2633903X23000144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Fibrosis severity scoring on Sirius red histology with multiple-instance deep learning.
Non-alcoholic fatty liver disease (NAFLD) is now the leading cause of chronic liver disease, affecting approximately 30% of people worldwide. Histopathology reading of fibrosis patterns is crucial to diagnosing NAFLD. In particular, separating mild from severe stages corresponds to a critical transition as it correlates with clinical outcomes. Deep Learning for digitized histopathology whole-slide images (WSIs) can reduce high inter- and intra-rater variability. We demonstrate a novel solution to score fibrosis severity on a retrospective cohort of 152 Sirius-Red WSIs, with fibrosis stage annotated at slide level by an expert pathologist. We exploit multiple instance learning and multiple-inferences to address the sparsity of pathological signs. We achieved an accuracy of , an F1 score of and an AUC of . These results set new state-of-the-art benchmarks for this application.