Andrea Volkamer , Sereina Riniker , Eva Nittinger , Jessica Lanini , Francesca Grisoni , Emma Evertsson , Raquel Rodríguez-Pérez , Nadine Schneider
{"title":"学术界和工业界用于小分子药物发现的机器学习","authors":"Andrea Volkamer , Sereina Riniker , Eva Nittinger , Jessica Lanini , Francesca Grisoni , Emma Evertsson , Raquel Rodríguez-Pérez , Nadine Schneider","doi":"10.1016/j.ailsci.2022.100056","DOIUrl":null,"url":null,"abstract":"<div><p>Academic and pharmaceutical industry research are both key for progresses in the field of molecular machine learning. Despite common open research questions and long-term goals, the nature and scope of investigations typically differ between academia and industry. Herein, we highlight the opportunities that machine learning models offer to accelerate and improve compound selection. All parts of the model life cycle are discussed, including data preparation, model building, validation, and deployment. Main challenges in molecular machine learning as well as differences between academia and industry are highlighted. Furthermore, application aspects in the design-make-test-analyze cycle are discussed. We close with strategies that could improve collaboration between academic and industrial institutions and will advance the field even further.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100056"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Machine learning for small molecule drug discovery in academia and industry\",\"authors\":\"Andrea Volkamer , Sereina Riniker , Eva Nittinger , Jessica Lanini , Francesca Grisoni , Emma Evertsson , Raquel Rodríguez-Pérez , Nadine Schneider\",\"doi\":\"10.1016/j.ailsci.2022.100056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Academic and pharmaceutical industry research are both key for progresses in the field of molecular machine learning. Despite common open research questions and long-term goals, the nature and scope of investigations typically differ between academia and industry. Herein, we highlight the opportunities that machine learning models offer to accelerate and improve compound selection. All parts of the model life cycle are discussed, including data preparation, model building, validation, and deployment. Main challenges in molecular machine learning as well as differences between academia and industry are highlighted. Furthermore, application aspects in the design-make-test-analyze cycle are discussed. We close with strategies that could improve collaboration between academic and industrial institutions and will advance the field even further.</p></div>\",\"PeriodicalId\":72304,\"journal\":{\"name\":\"Artificial intelligence in the life sciences\",\"volume\":\"3 \",\"pages\":\"Article 100056\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in the life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667318522000265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318522000265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning for small molecule drug discovery in academia and industry
Academic and pharmaceutical industry research are both key for progresses in the field of molecular machine learning. Despite common open research questions and long-term goals, the nature and scope of investigations typically differ between academia and industry. Herein, we highlight the opportunities that machine learning models offer to accelerate and improve compound selection. All parts of the model life cycle are discussed, including data preparation, model building, validation, and deployment. Main challenges in molecular machine learning as well as differences between academia and industry are highlighted. Furthermore, application aspects in the design-make-test-analyze cycle are discussed. We close with strategies that could improve collaboration between academic and industrial institutions and will advance the field even further.
Artificial intelligence in the life sciencesPharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)