{"title":"普朗特数对垂直平板传热的影响","authors":"A. R. Kaladgi, A. Samee, M. Ramis","doi":"10.1504/IJNEST.2017.10009093","DOIUrl":null,"url":null,"abstract":"Liquid metals, such as sodium (Na), lead (Pb), and lead-bismuth (Pb-Bi) eutectic (e), are considered as potential coolants for the fast spectrum nuclear reactors of the next generation. So the main objective of this paper is to study the heat transfer and fluid flow characteristics of liquid metal coolants flowing over a nuclear fuel element having uniform volumetric energy generation. Stream function vorticity formulation method was used to solve the full Navier Stokes equations governing the flow. The energy equation was solved using central finite difference method. For the two-dimensional steady state heat conduction and stream-function equation, the discretisation was done in the form suitable to solve using 'line-by-line Gauss-Seidel' solution technique whereas the discretisation of vorticity transport and energy equations was done using Alternating Direction Implicit (ADI) scheme. After discretisation the systems of algebraic equations were solved using 'Thomas algorithm'. The complete work was done by writing a well-validated indigenous computer code using C-language. The parameters considered for the study were: aspect ratio of fuel element, Ar, conduction-convection parameter Ncc, total energy generation parameter Qt, and flow Reynolds number ReH. The results obtained can be used to minimise the maximum temperature in the fuel element (hot spots) and prevent its melting.","PeriodicalId":35144,"journal":{"name":"International Journal of Nuclear Energy Science and Technology","volume":"11 1","pages":"272"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Influence of Prandtl number on heat transfer of a flat vertical plate\",\"authors\":\"A. R. Kaladgi, A. Samee, M. Ramis\",\"doi\":\"10.1504/IJNEST.2017.10009093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid metals, such as sodium (Na), lead (Pb), and lead-bismuth (Pb-Bi) eutectic (e), are considered as potential coolants for the fast spectrum nuclear reactors of the next generation. So the main objective of this paper is to study the heat transfer and fluid flow characteristics of liquid metal coolants flowing over a nuclear fuel element having uniform volumetric energy generation. Stream function vorticity formulation method was used to solve the full Navier Stokes equations governing the flow. The energy equation was solved using central finite difference method. For the two-dimensional steady state heat conduction and stream-function equation, the discretisation was done in the form suitable to solve using 'line-by-line Gauss-Seidel' solution technique whereas the discretisation of vorticity transport and energy equations was done using Alternating Direction Implicit (ADI) scheme. After discretisation the systems of algebraic equations were solved using 'Thomas algorithm'. The complete work was done by writing a well-validated indigenous computer code using C-language. The parameters considered for the study were: aspect ratio of fuel element, Ar, conduction-convection parameter Ncc, total energy generation parameter Qt, and flow Reynolds number ReH. The results obtained can be used to minimise the maximum temperature in the fuel element (hot spots) and prevent its melting.\",\"PeriodicalId\":35144,\"journal\":{\"name\":\"International Journal of Nuclear Energy Science and Technology\",\"volume\":\"11 1\",\"pages\":\"272\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nuclear Energy Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNEST.2017.10009093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nuclear Energy Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNEST.2017.10009093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
Influence of Prandtl number on heat transfer of a flat vertical plate
Liquid metals, such as sodium (Na), lead (Pb), and lead-bismuth (Pb-Bi) eutectic (e), are considered as potential coolants for the fast spectrum nuclear reactors of the next generation. So the main objective of this paper is to study the heat transfer and fluid flow characteristics of liquid metal coolants flowing over a nuclear fuel element having uniform volumetric energy generation. Stream function vorticity formulation method was used to solve the full Navier Stokes equations governing the flow. The energy equation was solved using central finite difference method. For the two-dimensional steady state heat conduction and stream-function equation, the discretisation was done in the form suitable to solve using 'line-by-line Gauss-Seidel' solution technique whereas the discretisation of vorticity transport and energy equations was done using Alternating Direction Implicit (ADI) scheme. After discretisation the systems of algebraic equations were solved using 'Thomas algorithm'. The complete work was done by writing a well-validated indigenous computer code using C-language. The parameters considered for the study were: aspect ratio of fuel element, Ar, conduction-convection parameter Ncc, total energy generation parameter Qt, and flow Reynolds number ReH. The results obtained can be used to minimise the maximum temperature in the fuel element (hot spots) and prevent its melting.
期刊介绍:
Today, nuclear reactors generate nearly one quarter of the electricity in nations representing two thirds of humanity, and other nuclear applications are integral to many aspects of the world economy. Nuclear fission remains an important option for meeting energy requirements and maintaining a balanced worldwide energy policy; with major countries expanding nuclear energy"s role and new countries poised to introduce it, the key issue is not whether the use of nuclear technology will grow worldwide, even if public opinion concerning safety, the economics of nuclear power, and waste disposal issues adversely affect the general acceptance of nuclear power, but whether it will grow fast enough to make a decisive contribution to the global imperative of sustainable development.