水润滑对岩石和土壤的摩擦影响不同吗?证据和开放性问题

IF 0.7 Q4 MECHANICS Studia Geotechnica et Mechanica Pub Date : 2022-07-27 DOI:10.2478/sgem-2022-0014
F. Cafaro, A. Hamad, L. Monterisi
{"title":"水润滑对岩石和土壤的摩擦影响不同吗?证据和开放性问题","authors":"F. Cafaro, A. Hamad, L. Monterisi","doi":"10.2478/sgem-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract The present paper focuses on the shear strength exhibited by rocks and soils when sliding along dry and wet surfaces, with this mechanism of failure being strongly related to the water lubrication phenomenon. It is well known that the frictional behaviour of geomaterials requires multiscale investigation. Under this perspective, experimental evidence of both friction at the grain scale (i.e. interparticle friction) and friction along sliding surfaces of rock and granular soil samples (i.e. surface friction) are analysed by using data from the literature. The review is addressed at linking different scales, stating the differences between rocks and soils in terms of frictional response to sliding and trying to point out still open problems for the research.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does water lubrication affect friction differently for rocks and soils? Evidence and open questions\",\"authors\":\"F. Cafaro, A. Hamad, L. Monterisi\",\"doi\":\"10.2478/sgem-2022-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present paper focuses on the shear strength exhibited by rocks and soils when sliding along dry and wet surfaces, with this mechanism of failure being strongly related to the water lubrication phenomenon. It is well known that the frictional behaviour of geomaterials requires multiscale investigation. Under this perspective, experimental evidence of both friction at the grain scale (i.e. interparticle friction) and friction along sliding surfaces of rock and granular soil samples (i.e. surface friction) are analysed by using data from the literature. The review is addressed at linking different scales, stating the differences between rocks and soils in terms of frictional response to sliding and trying to point out still open problems for the research.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2022-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2022-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文主要研究了岩石和土体沿干、湿表面滑动时的抗剪强度,这种破坏机制与水润滑现象密切相关。众所周知,岩土材料的摩擦行为需要多尺度的研究。在此视角下,利用文献数据分析了颗粒尺度上的摩擦(即颗粒间摩擦)和岩石和颗粒土样品沿滑动表面的摩擦(即表面摩擦)的实验证据。这篇综述是在不同的尺度上进行的,说明了岩石和土壤在滑动摩擦响应方面的差异,并试图指出研究中仍然存在的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Does water lubrication affect friction differently for rocks and soils? Evidence and open questions
Abstract The present paper focuses on the shear strength exhibited by rocks and soils when sliding along dry and wet surfaces, with this mechanism of failure being strongly related to the water lubrication phenomenon. It is well known that the frictional behaviour of geomaterials requires multiscale investigation. Under this perspective, experimental evidence of both friction at the grain scale (i.e. interparticle friction) and friction along sliding surfaces of rock and granular soil samples (i.e. surface friction) are analysed by using data from the literature. The review is addressed at linking different scales, stating the differences between rocks and soils in terms of frictional response to sliding and trying to point out still open problems for the research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
20
审稿时长
16 weeks
期刊介绍: An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories
期刊最新文献
Modeling of rigid inclusion ground improvements in large-scale geotechnical simulations Seismicity and Tectonics of the Republic of Kosovo Small-strain stiffness of selected anthropogenic aggregates from bender element tests The Role of Spatial Distribution of Geotechnical Soil Parameters in Site Investigation Geometrization of a 3D numerical model of an underground facility based on the results of terrestrial laser scanning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1