大型内陆湖泊中淹没水生植物群落的趋势:星形石藻(Nitellopsis obtusa)入侵的影响

IF 1.1 4区 环境科学与生态学 Q4 LIMNOLOGY Lake and Reservoir Management Pub Date : 2021-01-20 DOI:10.1080/10402381.2020.1859025
B. Ginn, E. Dias, Toshia Fleischaker
{"title":"大型内陆湖泊中淹没水生植物群落的趋势:星形石藻(Nitellopsis obtusa)入侵的影响","authors":"B. Ginn, E. Dias, Toshia Fleischaker","doi":"10.1080/10402381.2020.1859025","DOIUrl":null,"url":null,"abstract":"Abstract Ginn BK, Dias EFS, Fleischaker T. 2021. Trends in submersed aquatic plant communities in a large, inland lake: impacts of an invasion by starry stonewort (Nitellopsis obtusa). Lake Reserv Manage. 37:199–213. Aquatic plant and macroalgae (collectively, macrophyte) communities from Lake Simcoe (Ontario, Canada) were studied in lakewide, >200 site surveys in 2008, 2013, and 2018. Over this period, mean macrophyte biomass increased 5-fold, from 29.9 g (dry)/m2 in 2008 to 153.9 g (dry)/m2 in 2018, due to the arrival and expansion of invasive starry stonewort (Nitellopsis obtusa). First recorded in Lake Simcoe in 2009, starry stonewort has greatly altered the macrophyte community, particularly in shallow (<3 m) water where it outcompeted invasive Eurasian watermilfoil (Myriophyllum spicatum). By 2018, starry stonewort comprised 67.6% of the total macrophyte biomass in Lake Simcoe. In shallow, mesotrophic Cook’s Bay, comparison to studies from the 1980s shows an increased plant biomass due to increased water clarity, from phosphorus (P) abatement and invasive dreissenid mussels, with further increases after 2011 due to starry stonewort. Starry stonewort may continue to impact nearshore ecology, with shallow-water fish species losing habitat and refugia as the “forest-like” structure of the plant community is replaced by large, dense aggregations of starry stonewort. Recreational uses will also be impaired and landowner complaints of macrophyte wash-ups will increase, with municipalities and lake-based businesses bearing the cost of mitigation and control strategies. Future research should consider the impacts of starry stonewort to P cycling as, unlike aquatic plants that uptake sediment P, macroalgae use dissolved P as a nutrient source. A lack of communication and reporting on starry stonewort has enabled its spread through south-central Ontario and the Great Lakes Region. Moving forward, we need a better understanding of starry stonewort biology and need to develop effective control and management strategies.","PeriodicalId":18017,"journal":{"name":"Lake and Reservoir Management","volume":"37 1","pages":"199 - 213"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10402381.2020.1859025","citationCount":"9","resultStr":"{\"title\":\"Trends in submersed aquatic plant communities in a large, inland lake: impacts of an invasion by starry stonewort (Nitellopsis obtusa)\",\"authors\":\"B. Ginn, E. Dias, Toshia Fleischaker\",\"doi\":\"10.1080/10402381.2020.1859025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ginn BK, Dias EFS, Fleischaker T. 2021. Trends in submersed aquatic plant communities in a large, inland lake: impacts of an invasion by starry stonewort (Nitellopsis obtusa). Lake Reserv Manage. 37:199–213. Aquatic plant and macroalgae (collectively, macrophyte) communities from Lake Simcoe (Ontario, Canada) were studied in lakewide, >200 site surveys in 2008, 2013, and 2018. Over this period, mean macrophyte biomass increased 5-fold, from 29.9 g (dry)/m2 in 2008 to 153.9 g (dry)/m2 in 2018, due to the arrival and expansion of invasive starry stonewort (Nitellopsis obtusa). First recorded in Lake Simcoe in 2009, starry stonewort has greatly altered the macrophyte community, particularly in shallow (<3 m) water where it outcompeted invasive Eurasian watermilfoil (Myriophyllum spicatum). By 2018, starry stonewort comprised 67.6% of the total macrophyte biomass in Lake Simcoe. In shallow, mesotrophic Cook’s Bay, comparison to studies from the 1980s shows an increased plant biomass due to increased water clarity, from phosphorus (P) abatement and invasive dreissenid mussels, with further increases after 2011 due to starry stonewort. Starry stonewort may continue to impact nearshore ecology, with shallow-water fish species losing habitat and refugia as the “forest-like” structure of the plant community is replaced by large, dense aggregations of starry stonewort. Recreational uses will also be impaired and landowner complaints of macrophyte wash-ups will increase, with municipalities and lake-based businesses bearing the cost of mitigation and control strategies. Future research should consider the impacts of starry stonewort to P cycling as, unlike aquatic plants that uptake sediment P, macroalgae use dissolved P as a nutrient source. A lack of communication and reporting on starry stonewort has enabled its spread through south-central Ontario and the Great Lakes Region. Moving forward, we need a better understanding of starry stonewort biology and need to develop effective control and management strategies.\",\"PeriodicalId\":18017,\"journal\":{\"name\":\"Lake and Reservoir Management\",\"volume\":\"37 1\",\"pages\":\"199 - 213\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10402381.2020.1859025\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lake and Reservoir Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10402381.2020.1859025\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lake and Reservoir Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10402381.2020.1859025","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 9

摘要

摘要Ginn BK,Dias EFS,Fleischer T.2021。大型内陆湖泊中淹没水生植物群落的趋势:星形石藻(Nitellopsis obtusa)入侵的影响。湖泊保护区管理。37:199–213。在2008年、2013年和2018年的200多个现场调查中,对加拿大安大略省辛科湖的水生植物和大型藻类(统称为大型植物)群落进行了研究。在此期间,大型植物的平均生物量从29.9增加了5倍 2008年g(干)/m2至153.9 g(干)/m2,这是由于侵入性星形石端口(Nitellopsis obtusa)的到来和扩张。2009年在辛科湖首次记录到,星空石壁极大地改变了大型植物群落,尤其是在浅水区(<3 m) 在那里,它击败了入侵的欧亚水翼(Myriophyllum spicatum)。到2018年,星空石壁占西姆科湖大型植物总生物量的67.6%。在浅水、中营养的库克湾,与20世纪80年代的研究相比,表明由于磷(P)的减少和入侵的dreissenid贻贝提高了水的透明度,植物生物量增加,2011年后,由于星形石端口,植物生物总量进一步增加。星形石斑鱼可能会继续影响近岸生态,浅水鱼类物种失去栖息地和避难所,因为植物群落的“森林状”结构被大型、密集的星形石斑石群落所取代。娱乐用途也将受到损害,土地所有者对大型植物冲刷的投诉将增加,市政当局和湖泊企业将承担缓解和控制策略的成本。未来的研究应该考虑星形石藻对磷循环的影响,因为与吸收沉积物磷的水生植物不同,大型藻类使用溶解的磷作为营养来源。由于缺乏对星空石港的沟通和报道,其传播范围遍及安大略省中南部和五大湖区。展望未来,我们需要更好地了解星形石端口生物学,并需要制定有效的控制和管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trends in submersed aquatic plant communities in a large, inland lake: impacts of an invasion by starry stonewort (Nitellopsis obtusa)
Abstract Ginn BK, Dias EFS, Fleischaker T. 2021. Trends in submersed aquatic plant communities in a large, inland lake: impacts of an invasion by starry stonewort (Nitellopsis obtusa). Lake Reserv Manage. 37:199–213. Aquatic plant and macroalgae (collectively, macrophyte) communities from Lake Simcoe (Ontario, Canada) were studied in lakewide, >200 site surveys in 2008, 2013, and 2018. Over this period, mean macrophyte biomass increased 5-fold, from 29.9 g (dry)/m2 in 2008 to 153.9 g (dry)/m2 in 2018, due to the arrival and expansion of invasive starry stonewort (Nitellopsis obtusa). First recorded in Lake Simcoe in 2009, starry stonewort has greatly altered the macrophyte community, particularly in shallow (<3 m) water where it outcompeted invasive Eurasian watermilfoil (Myriophyllum spicatum). By 2018, starry stonewort comprised 67.6% of the total macrophyte biomass in Lake Simcoe. In shallow, mesotrophic Cook’s Bay, comparison to studies from the 1980s shows an increased plant biomass due to increased water clarity, from phosphorus (P) abatement and invasive dreissenid mussels, with further increases after 2011 due to starry stonewort. Starry stonewort may continue to impact nearshore ecology, with shallow-water fish species losing habitat and refugia as the “forest-like” structure of the plant community is replaced by large, dense aggregations of starry stonewort. Recreational uses will also be impaired and landowner complaints of macrophyte wash-ups will increase, with municipalities and lake-based businesses bearing the cost of mitigation and control strategies. Future research should consider the impacts of starry stonewort to P cycling as, unlike aquatic plants that uptake sediment P, macroalgae use dissolved P as a nutrient source. A lack of communication and reporting on starry stonewort has enabled its spread through south-central Ontario and the Great Lakes Region. Moving forward, we need a better understanding of starry stonewort biology and need to develop effective control and management strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lake and Reservoir Management
Lake and Reservoir Management 环境科学-海洋与淡水生物学
自引率
6.70%
发文量
22
期刊介绍: Lake and Reservoir Management (LRM) publishes original, previously unpublished studies relevant to lake and reservoir management. Papers address the management of lakes and reservoirs, their watersheds and tributaries, along with the limnology and ecology needed for sound management of these systems. Case studies that advance the science of lake management or confirm important management concepts are appropriate as long as there is clearly described management significance. Papers on economic, social, regulatory and policy aspects of lake management are also welcome with appropriate supporting data and management implications. Literature syntheses and papers developing a conceptual foundation of lake and watershed ecology will be considered for publication, but there needs to be clear emphasis on management implications. Modeling papers will be considered where the model is properly verified but it is also highly preferable that management based on the model has been taken and results have been documented. Application of known models to yet another system without a clear advance in resultant management are unlikely to be accepted. Shorter notes that convey important early results of long-term studies or provide data relating to causative agents or management approaches that warrant further study are acceptable even if the story is not yet complete. All submissions are subject to peer review to assure relevance and reliability for management application.
期刊最新文献
Spatial-temporal shifts in submersed aquatic vegetation community structure resulting from a selective herbicide treatment in Lake Sampson, Florida, USA Relative energy and perceived impact of vessel-generated waves in fetch-limited environments Watershed grassland fires drive nutrient increases in replicated experimental ponds Reservoir siltation and sediment characterization for reuse as construction material in a semi-arid area Assessing the efficacy of spring stocking of pikeperch (Sander lucioperca) into a eutrophic reservoir
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1