自然资源教育者、研究人员和管理人员的计算流畅性之路

IF 1.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Natural Resource Modeling Pub Date : 2021-06-29 DOI:10.1111/nrm.12318
R. Erickson, J. Burnett, Mark T. Wiltermuth, E. Bulliner, Leslie Hsu
{"title":"自然资源教育者、研究人员和管理人员的计算流畅性之路","authors":"R. Erickson, J. Burnett, Mark T. Wiltermuth, E. Bulliner, Leslie Hsu","doi":"10.1111/nrm.12318","DOIUrl":null,"url":null,"abstract":"Natural resource management and supporting research teams need computational fluency in the data and model‐rich 21st century. Computational fluency describes the ability of practitioners and scientists to conduct research and represent natural systems within the computer's environment. Advancement in information synthesis for natural resource management requires more sophisticated computational approaches, as well as reproducible, reusable, extensible, and transferable methods. Despite this importance, many new and current natural resource practitioners lack computational fluency and no common set of recommended resources and practices exist for learning these skills. Broadly, attaining computational fluency entails moving beyond the simple use of computers to applying sound computational principles and methods and including computational experts (such as computer scientists) on research teams. Our path for computational fluency includes using open‐source tools when possible; reproducible data management, statistics, and modeling; understanding and applying the benefits of basic computer programming to carry out more complex procedures; tracking code with version control; working in controlled computer environments; and using advanced computing resources.","PeriodicalId":49778,"journal":{"name":"Natural Resource Modeling","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/nrm.12318","citationCount":"1","resultStr":"{\"title\":\"Paths to computational fluency for natural resource educators, researchers, and managers\",\"authors\":\"R. Erickson, J. Burnett, Mark T. Wiltermuth, E. Bulliner, Leslie Hsu\",\"doi\":\"10.1111/nrm.12318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural resource management and supporting research teams need computational fluency in the data and model‐rich 21st century. Computational fluency describes the ability of practitioners and scientists to conduct research and represent natural systems within the computer's environment. Advancement in information synthesis for natural resource management requires more sophisticated computational approaches, as well as reproducible, reusable, extensible, and transferable methods. Despite this importance, many new and current natural resource practitioners lack computational fluency and no common set of recommended resources and practices exist for learning these skills. Broadly, attaining computational fluency entails moving beyond the simple use of computers to applying sound computational principles and methods and including computational experts (such as computer scientists) on research teams. Our path for computational fluency includes using open‐source tools when possible; reproducible data management, statistics, and modeling; understanding and applying the benefits of basic computer programming to carry out more complex procedures; tracking code with version control; working in controlled computer environments; and using advanced computing resources.\",\"PeriodicalId\":49778,\"journal\":{\"name\":\"Natural Resource Modeling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/nrm.12318\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resource Modeling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/nrm.12318\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resource Modeling","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/nrm.12318","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

在数据和模型丰富的21世纪,自然资源管理和支持研究团队需要计算流畅性。计算流利性描述了从业者和科学家在计算机环境中进行研究和表示自然系统的能力。自然资源管理信息综合的进步需要更复杂的计算方法,以及可重复使用、可扩展和可转移的方法。尽管这很重要,但许多新的和当前的自然资源从业者缺乏计算流畅性,也没有一套通用的推荐资源和实践来学习这些技能。从广义上讲,实现计算流畅性需要超越简单的计算机使用,应用合理的计算原理和方法,并将计算专家(如计算机科学家)纳入研究团队。我们的计算流畅性之路包括尽可能使用开源工具;可复制的数据管理、统计和建模;理解并应用基础计算机编程的好处来执行更复杂的程序;带有版本控制的跟踪代码;在受控的计算机环境中工作;以及使用先进的计算资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Paths to computational fluency for natural resource educators, researchers, and managers
Natural resource management and supporting research teams need computational fluency in the data and model‐rich 21st century. Computational fluency describes the ability of practitioners and scientists to conduct research and represent natural systems within the computer's environment. Advancement in information synthesis for natural resource management requires more sophisticated computational approaches, as well as reproducible, reusable, extensible, and transferable methods. Despite this importance, many new and current natural resource practitioners lack computational fluency and no common set of recommended resources and practices exist for learning these skills. Broadly, attaining computational fluency entails moving beyond the simple use of computers to applying sound computational principles and methods and including computational experts (such as computer scientists) on research teams. Our path for computational fluency includes using open‐source tools when possible; reproducible data management, statistics, and modeling; understanding and applying the benefits of basic computer programming to carry out more complex procedures; tracking code with version control; working in controlled computer environments; and using advanced computing resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Resource Modeling
Natural Resource Modeling 环境科学-环境科学
CiteScore
3.50
自引率
6.20%
发文量
28
审稿时长
>36 weeks
期刊介绍: Natural Resource Modeling is an international journal devoted to mathematical modeling of natural resource systems. It reflects the conceptual and methodological core that is common to model building throughout disciplines including such fields as forestry, fisheries, economics and ecology. This core draws upon the analytical and methodological apparatus of mathematics, statistics, and scientific computing.
期刊最新文献
Predicting soil hydraulic conductivity using random forest, SVM, and LSSVM models The role of environmental tax in guiding global climate policies to mitigate climate changes in European region Predicting gully formation: An approach for assessing susceptibility and future risk Research on the impact of leadership on improving urban water efficiency and water conservation policies Assessing the load capacity curve hypothesis considering the green energy transition, banking sector expansion, and import price of crude oil in the United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1