肌肉组织电刺激器设计的建模与模型充分性评估

Q3 Computer Science Radioelectronic and Computer Systems Pub Date : 2023-05-25 DOI:10.32620/reks.2023.2.02
I. Prasol, Olha Yeroshenko
{"title":"肌肉组织电刺激器设计的建模与模型充分性评估","authors":"I. Prasol, Olha Yeroshenko","doi":"10.32620/reks.2023.2.02","DOIUrl":null,"url":null,"abstract":"The research object is the mathematical modeling of human skeletal muscle electrical stimulation characteristics during therapy. The subject of research is mathematical models of electrical stimulation characteristics that relate muscle contraction amplitude to the amplitude, the rate of stimulating effects, and other parameters. The research purpose is to study such models, develop an algorithm for their correction and a method for estimating their adequacy. The methods used: mathematical modeling methods, methods of structural and parametric identification of models, optimization methods, methods for estimating the adequacy of models, and interval methods. The results: an algorithm for muscle electrical stimulation characteristics mathematical models correcting during several sessions in case of their change is proposed; a method for estimating the model adequacy area in the external variables space in order to control its adequacy is proposed; using the interval mathematics methods to construct the adequacy actual area is justified; an interval estimating of the error in modeling a certain output characteristic is introduced, that, in the case of characteristic monotonicity, allows checking the adequacy maintaining by checking some inequalities. The results can be used in the design of electrical stimulators and for determining the electrical stimulation effects of individual parameters during one session or a series of sessions. The scientific originality: the interval mathematics methods for approximating the mathematical model adequacy area in a hyperparallepiped and checking for nesting in the target area in the external parameters space in order to control the adequacy during the model correction in electrical stimulation is proposed and justified.","PeriodicalId":36122,"journal":{"name":"Radioelectronic and Computer Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and estimating the model adequacy in muscle tissue electrical stimulator designing\",\"authors\":\"I. Prasol, Olha Yeroshenko\",\"doi\":\"10.32620/reks.2023.2.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research object is the mathematical modeling of human skeletal muscle electrical stimulation characteristics during therapy. The subject of research is mathematical models of electrical stimulation characteristics that relate muscle contraction amplitude to the amplitude, the rate of stimulating effects, and other parameters. The research purpose is to study such models, develop an algorithm for their correction and a method for estimating their adequacy. The methods used: mathematical modeling methods, methods of structural and parametric identification of models, optimization methods, methods for estimating the adequacy of models, and interval methods. The results: an algorithm for muscle electrical stimulation characteristics mathematical models correcting during several sessions in case of their change is proposed; a method for estimating the model adequacy area in the external variables space in order to control its adequacy is proposed; using the interval mathematics methods to construct the adequacy actual area is justified; an interval estimating of the error in modeling a certain output characteristic is introduced, that, in the case of characteristic monotonicity, allows checking the adequacy maintaining by checking some inequalities. The results can be used in the design of electrical stimulators and for determining the electrical stimulation effects of individual parameters during one session or a series of sessions. The scientific originality: the interval mathematics methods for approximating the mathematical model adequacy area in a hyperparallepiped and checking for nesting in the target area in the external parameters space in order to control the adequacy during the model correction in electrical stimulation is proposed and justified.\",\"PeriodicalId\":36122,\"journal\":{\"name\":\"Radioelectronic and Computer Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioelectronic and Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32620/reks.2023.2.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioelectronic and Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32620/reks.2023.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

研究对象是治疗过程中人体骨骼肌电刺激特性的数学建模。研究的主题是电刺激特性的数学模型,该模型将肌肉收缩幅度与幅度、刺激效果的速率和其他参数联系起来。研究目的是研究这些模型,开发校正算法和估计其充分性的方法。使用的方法:数学建模方法、模型的结构和参数识别方法、优化方法、估计模型充分性的方法和区间方法。结果:提出了一种肌肉电刺激特性数学模型在多次训练中发生变化时进行校正的算法;提出了一种在外部变量空间中估计模型充分性区域以控制其充分性的方法;利用区间数学方法构造了充分性实际面积的合理性;引入了一种对某一输出特性建模误差的区间估计,在特性单调的情况下,通过检验一些不等式,可以检验充分性保持。该结果可用于电刺激器的设计以及用于确定在一个会话或一系列会话期间单个参数的电刺激效果。科学独创性:提出并证明了区间数学方法,用于在超平行空间中逼近数学模型的充分性区域,并在外部参数空间中检查目标区域中的嵌套,以控制电刺激中模型校正的充分性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and estimating the model adequacy in muscle tissue electrical stimulator designing
The research object is the mathematical modeling of human skeletal muscle electrical stimulation characteristics during therapy. The subject of research is mathematical models of electrical stimulation characteristics that relate muscle contraction amplitude to the amplitude, the rate of stimulating effects, and other parameters. The research purpose is to study such models, develop an algorithm for their correction and a method for estimating their adequacy. The methods used: mathematical modeling methods, methods of structural and parametric identification of models, optimization methods, methods for estimating the adequacy of models, and interval methods. The results: an algorithm for muscle electrical stimulation characteristics mathematical models correcting during several sessions in case of their change is proposed; a method for estimating the model adequacy area in the external variables space in order to control its adequacy is proposed; using the interval mathematics methods to construct the adequacy actual area is justified; an interval estimating of the error in modeling a certain output characteristic is introduced, that, in the case of characteristic monotonicity, allows checking the adequacy maintaining by checking some inequalities. The results can be used in the design of electrical stimulators and for determining the electrical stimulation effects of individual parameters during one session or a series of sessions. The scientific originality: the interval mathematics methods for approximating the mathematical model adequacy area in a hyperparallepiped and checking for nesting in the target area in the external parameters space in order to control the adequacy during the model correction in electrical stimulation is proposed and justified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radioelectronic and Computer Systems
Radioelectronic and Computer Systems Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
3.60
自引率
0.00%
发文量
50
审稿时长
2 weeks
期刊最新文献
Risk and uncertainty assessment in software project management: integrating decision trees and Monte Carlo modeling Advanced file carving: ontology, models and methods Modeling the mindfulness people's function based on the recognition of biometric parameters by artificial intelligence elements Influence of the number system in residual classes on the fault tolerance of the computer system A method for extracting the semantic features of speech signal recognition based on empirical wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1