W. Tao, Tsam Ju, R. Milne, G. Miehe, Wentao Wang, Jialiang Li, Lei Chen, Kangshan Mao
{"title":"在海拔4000 m以上梯度上,叶片养分含量对光合作用的改善提高了西藏刺柏水分利用效率。","authors":"W. Tao, Tsam Ju, R. Milne, G. Miehe, Wentao Wang, Jialiang Li, Lei Chen, Kangshan Mao","doi":"10.1080/17550874.2021.1933232","DOIUrl":null,"url":null,"abstract":"ABSTRACT Background Leaf functional traits can influence the ability of plants to grow when facing stresses. Climate changes can impose fundamental impacts on plant growth, especially at high mountains. Yet little is known about relationships between leaf functional traits and elevations in tree species above 4000 m a.s.l. Aims Our objective was to investigate and compare the trend in water use efficiency (WUE) in the Tibetan juniper (Juniperus tibetica) along elevation gradients under different climate conditions, and by presenting evidence from leaf functional traits, to simultaneously clarify the underlying mechanisms. Methods We investigated various leaf functional traits, i.e. leaf carbon (δ13C) and oxygen (δ18O) isotopic composition, leaf N and P concentration and specific leaf area (SLA) in J. tibetica, a dominant tree species of the treeline, along elevation gradients at three study sites between 4150 and 4950 m a.s.l. in the Qinghai-Tibet Plateau. Results As elevation increased, leaf δ13C, used as a proxy for WUE, increased, whereas leaf δ18Odecreased in J. tibetica. Leaf N area also increased with elevation. Conclusions We deduced that increasing WUE with elevation was due to enhanced photosynthetic capacity at all three study sites, and increased N area may enhance photosynthesis and hence WUE.","PeriodicalId":49691,"journal":{"name":"Plant Ecology & Diversity","volume":"14 1","pages":"81 - 92"},"PeriodicalIF":1.7000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17550874.2021.1933232","citationCount":"2","resultStr":"{\"title\":\"Improved photosynthesis by leaf nutrient content enhances water use efficiency in Juniperus tibetica along elevation gradients above 4000 m a.s.l.\",\"authors\":\"W. Tao, Tsam Ju, R. Milne, G. Miehe, Wentao Wang, Jialiang Li, Lei Chen, Kangshan Mao\",\"doi\":\"10.1080/17550874.2021.1933232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Background Leaf functional traits can influence the ability of plants to grow when facing stresses. Climate changes can impose fundamental impacts on plant growth, especially at high mountains. Yet little is known about relationships between leaf functional traits and elevations in tree species above 4000 m a.s.l. Aims Our objective was to investigate and compare the trend in water use efficiency (WUE) in the Tibetan juniper (Juniperus tibetica) along elevation gradients under different climate conditions, and by presenting evidence from leaf functional traits, to simultaneously clarify the underlying mechanisms. Methods We investigated various leaf functional traits, i.e. leaf carbon (δ13C) and oxygen (δ18O) isotopic composition, leaf N and P concentration and specific leaf area (SLA) in J. tibetica, a dominant tree species of the treeline, along elevation gradients at three study sites between 4150 and 4950 m a.s.l. in the Qinghai-Tibet Plateau. Results As elevation increased, leaf δ13C, used as a proxy for WUE, increased, whereas leaf δ18Odecreased in J. tibetica. Leaf N area also increased with elevation. Conclusions We deduced that increasing WUE with elevation was due to enhanced photosynthetic capacity at all three study sites, and increased N area may enhance photosynthesis and hence WUE.\",\"PeriodicalId\":49691,\"journal\":{\"name\":\"Plant Ecology & Diversity\",\"volume\":\"14 1\",\"pages\":\"81 - 92\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17550874.2021.1933232\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Ecology & Diversity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17550874.2021.1933232\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Ecology & Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17550874.2021.1933232","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Improved photosynthesis by leaf nutrient content enhances water use efficiency in Juniperus tibetica along elevation gradients above 4000 m a.s.l.
ABSTRACT Background Leaf functional traits can influence the ability of plants to grow when facing stresses. Climate changes can impose fundamental impacts on plant growth, especially at high mountains. Yet little is known about relationships between leaf functional traits and elevations in tree species above 4000 m a.s.l. Aims Our objective was to investigate and compare the trend in water use efficiency (WUE) in the Tibetan juniper (Juniperus tibetica) along elevation gradients under different climate conditions, and by presenting evidence from leaf functional traits, to simultaneously clarify the underlying mechanisms. Methods We investigated various leaf functional traits, i.e. leaf carbon (δ13C) and oxygen (δ18O) isotopic composition, leaf N and P concentration and specific leaf area (SLA) in J. tibetica, a dominant tree species of the treeline, along elevation gradients at three study sites between 4150 and 4950 m a.s.l. in the Qinghai-Tibet Plateau. Results As elevation increased, leaf δ13C, used as a proxy for WUE, increased, whereas leaf δ18Odecreased in J. tibetica. Leaf N area also increased with elevation. Conclusions We deduced that increasing WUE with elevation was due to enhanced photosynthetic capacity at all three study sites, and increased N area may enhance photosynthesis and hence WUE.
期刊介绍:
Plant Ecology and Diversity is an international journal for communicating results and novel ideas in plant science, in print and on-line, six times a year. All areas of plant biology relating to ecology, evolution and diversity are of interest, including those which explicitly deal with today''s highly topical themes, such as biodiversity, conservation and global change. We consider submissions that address fundamental questions which are pertinent to contemporary plant science. Articles concerning extreme environments world-wide are particularly welcome.
Plant Ecology and Diversity considers for publication original research articles, short communications, reviews, and scientific correspondence that explore thought-provoking ideas.
To aid redressing ‘publication bias’ the journal is unique in reporting, in the form of short communications, ‘negative results’ and ‘repeat experiments’ that test ecological theories experimentally, in theoretically flawless and methodologically sound papers. Research reviews and method papers, are also encouraged.
Plant Ecology & Diversity publishes high-quality and topical research that demonstrates solid scholarship. As such, the journal does not publish purely descriptive papers. Submissions are required to focus on research topics that are broad in their scope and thus provide new insights and contribute to theory. The original research should address clear hypotheses that test theory or questions and offer new insights on topics of interest to an international readership.