软土中地铁开挖支护结构力系转换机理

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Bulletin of Engineering Geology and the Environment Pub Date : 2023-06-19 DOI:10.1007/s10064-023-03282-5
Meng Han, Zhe Li, Jinqing Jia, Xiaohua Bao, Guoxiong Mei, Lulu Liu
{"title":"软土中地铁开挖支护结构力系转换机理","authors":"Meng Han,&nbsp;Zhe Li,&nbsp;Jinqing Jia,&nbsp;Xiaohua Bao,&nbsp;Guoxiong Mei,&nbsp;Lulu Liu","doi":"10.1007/s10064-023-03282-5","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of force system balance between earth pressure and retaining structures has received less attention. Therefore, this paper investigates the force system conversion mechanism of retaining structures for braced excavation in soft soil. Based on the measured data at Daliang Station, the deformation characteristics of braced excavation in soft soil were analyzed, and the temperature correction model and prediction methods for strut force were established. Further, the mechanism of force system conversion between earth pressure and retaining structures was discussed. Optimized support schemes were proposed to reduce the excavation displacement and forces. The results show that the maximum wall displacement was 0.02–0.3% of the excavation depth. The effect of temperature on the support force was about 24.9% on average, and the temperature effect on wall displacement was 12.69–38.57%. The proposed temperature correction model can effectively eliminate the temperature effect on the support force. When excavating to the bottom plate, about 70% of the water-and-soil pressure was converted into the internal force of the support structure. And the optimized support schemes resulted in a maximum reduction in wall displacement of 23.7% and an increase of 4.21% in the proportion of water-and-soil pressure converted into support forces. The results help to provide a reference for the design and construction of the subway excavation engineering.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"82 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Force system conversion mechanisms of retaining structures for subway excavation in soft soil\",\"authors\":\"Meng Han,&nbsp;Zhe Li,&nbsp;Jinqing Jia,&nbsp;Xiaohua Bao,&nbsp;Guoxiong Mei,&nbsp;Lulu Liu\",\"doi\":\"10.1007/s10064-023-03282-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The problem of force system balance between earth pressure and retaining structures has received less attention. Therefore, this paper investigates the force system conversion mechanism of retaining structures for braced excavation in soft soil. Based on the measured data at Daliang Station, the deformation characteristics of braced excavation in soft soil were analyzed, and the temperature correction model and prediction methods for strut force were established. Further, the mechanism of force system conversion between earth pressure and retaining structures was discussed. Optimized support schemes were proposed to reduce the excavation displacement and forces. The results show that the maximum wall displacement was 0.02–0.3% of the excavation depth. The effect of temperature on the support force was about 24.9% on average, and the temperature effect on wall displacement was 12.69–38.57%. The proposed temperature correction model can effectively eliminate the temperature effect on the support force. When excavating to the bottom plate, about 70% of the water-and-soil pressure was converted into the internal force of the support structure. And the optimized support schemes resulted in a maximum reduction in wall displacement of 23.7% and an increase of 4.21% in the proportion of water-and-soil pressure converted into support forces. The results help to provide a reference for the design and construction of the subway excavation engineering.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"82 7\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-023-03282-5\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-023-03282-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1

摘要

土压力与挡土结构之间的力系平衡问题一直受到较少的关注。为此,本文对软土地基支撑开挖支护结构的力系转换机理进行了研究。基于大梁站实测数据,分析了软土地基支撑开挖的变形特征,建立了温度校正模型和支撑力预测方法。在此基础上,探讨了土压力与支挡结构之间的力系转换机理。为减小基坑开挖位移和受力,提出了优化支护方案。结果表明:墙体最大位移为开挖深度的0.02 ~ 0.3%;温度对支撑力的影响平均约为24.9%,对壁面位移的影响平均为12.69 ~ 38.57%。提出的温度修正模型可以有效地消除温度对支撑力的影响。开挖至底板时,约70%的水土压力转化为支护结构的内力。优化后的支护方案使墙体位移最大减小23.7%,水土压力转化为支护力的比例最大提高4.21%。研究结果有助于为地铁开挖工程的设计和施工提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Force system conversion mechanisms of retaining structures for subway excavation in soft soil

The problem of force system balance between earth pressure and retaining structures has received less attention. Therefore, this paper investigates the force system conversion mechanism of retaining structures for braced excavation in soft soil. Based on the measured data at Daliang Station, the deformation characteristics of braced excavation in soft soil were analyzed, and the temperature correction model and prediction methods for strut force were established. Further, the mechanism of force system conversion between earth pressure and retaining structures was discussed. Optimized support schemes were proposed to reduce the excavation displacement and forces. The results show that the maximum wall displacement was 0.02–0.3% of the excavation depth. The effect of temperature on the support force was about 24.9% on average, and the temperature effect on wall displacement was 12.69–38.57%. The proposed temperature correction model can effectively eliminate the temperature effect on the support force. When excavating to the bottom plate, about 70% of the water-and-soil pressure was converted into the internal force of the support structure. And the optimized support schemes resulted in a maximum reduction in wall displacement of 23.7% and an increase of 4.21% in the proportion of water-and-soil pressure converted into support forces. The results help to provide a reference for the design and construction of the subway excavation engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
期刊最新文献
Creep mechanism of landslide formation in rock with bedding and weak layers in Zezhou, Shanxi, China Effects of initial water and salt content on permeability and microstructure of sodic-saline loessal soils Experimental investigation and fractional elastoplastic damage constitutive modelling of gray sandstone under loading disturbance Probabilistic landslide-generated impulse waves estimation in mountain reservoirs, a case study A novel data-driven hybrid intelligent prediction model for reservoir landslide displacement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1