数字制造带肋混凝土楼板:建筑的可持续解决方案

Q2 Engineering RILEM Technical Letters Pub Date : 2022-09-23 DOI:10.21809/rilemtechlett.2022.161
Jaime Mata‐Falcón, P. Bischof, Tobias Huber, Ana Anton, Joris Burger, F. Ranaudo, Andrei Jipa, Lukas Gebhard, L. Reiter, E. Lloret-Fritschi, T. Van Mele, P. Block, F. Gramazio, M. Kohler, B. Dillenburger, T. Wangler, W. Kaufmann
{"title":"数字制造带肋混凝土楼板:建筑的可持续解决方案","authors":"Jaime Mata‐Falcón, P. Bischof, Tobias Huber, Ana Anton, Joris Burger, F. Ranaudo, Andrei Jipa, Lukas Gebhard, L. Reiter, E. Lloret-Fritschi, T. Van Mele, P. Block, F. Gramazio, M. Kohler, B. Dillenburger, T. Wangler, W. Kaufmann","doi":"10.21809/rilemtechlett.2022.161","DOIUrl":null,"url":null,"abstract":"The concrete used in floor slabs accounts for large greenhouse gas emissions in building construction. Solid slabs, often used today, consume much more concrete than ribbed slabs built by pioneer structural engineers like Hennebique, Arcangeli and Nervi. The first part of this paper analyses the evolution of slab systems over the last century and their carbon footprint, highlighting that ribbed slabs have been abandoned mainly for the sake of construction time and cost efficiency. However, highly material-efficient two-way ribbed slabs are essential to reduce the environmental impact of construction. Hence, the second part of this paper discusses how digital fabrication can help to tackle this challenge and presents four concrete floor systems built with digitally fabricated formwork. The digital fabrication technologies employed to produce these slab systems are digital cutting, binder-jetting, polymer extrusion and 3D concrete printing. The presented applications showcase a reduction in concrete use of approximately 50% compared to solid slabs. However, the digitally fabricated complex formworks produced were wasteful and/or labour-intensive. Further developments are required to make the digital processes sustainable and competitive by streamlining the production, using low carbon concrete mixes as well as reusing and recycling the formwork or structurally activating stay-in-place formwork.","PeriodicalId":36420,"journal":{"name":"RILEM Technical Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Digitally fabricated ribbed concrete floor slabs: a sustainable solution for construction\",\"authors\":\"Jaime Mata‐Falcón, P. Bischof, Tobias Huber, Ana Anton, Joris Burger, F. Ranaudo, Andrei Jipa, Lukas Gebhard, L. Reiter, E. Lloret-Fritschi, T. Van Mele, P. Block, F. Gramazio, M. Kohler, B. Dillenburger, T. Wangler, W. Kaufmann\",\"doi\":\"10.21809/rilemtechlett.2022.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concrete used in floor slabs accounts for large greenhouse gas emissions in building construction. Solid slabs, often used today, consume much more concrete than ribbed slabs built by pioneer structural engineers like Hennebique, Arcangeli and Nervi. The first part of this paper analyses the evolution of slab systems over the last century and their carbon footprint, highlighting that ribbed slabs have been abandoned mainly for the sake of construction time and cost efficiency. However, highly material-efficient two-way ribbed slabs are essential to reduce the environmental impact of construction. Hence, the second part of this paper discusses how digital fabrication can help to tackle this challenge and presents four concrete floor systems built with digitally fabricated formwork. The digital fabrication technologies employed to produce these slab systems are digital cutting, binder-jetting, polymer extrusion and 3D concrete printing. The presented applications showcase a reduction in concrete use of approximately 50% compared to solid slabs. However, the digitally fabricated complex formworks produced were wasteful and/or labour-intensive. Further developments are required to make the digital processes sustainable and competitive by streamlining the production, using low carbon concrete mixes as well as reusing and recycling the formwork or structurally activating stay-in-place formwork.\",\"PeriodicalId\":36420,\"journal\":{\"name\":\"RILEM Technical Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RILEM Technical Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21809/rilemtechlett.2022.161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RILEM Technical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21809/rilemtechlett.2022.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 10

摘要

楼板中使用的混凝土是建筑施工中大量温室气体排放的原因。如今经常使用的实心板比Hennebique、Arcangeli和Nervi等先驱结构工程师建造的肋板消耗更多的混凝土。本文的第一部分分析了上个世纪楼板系统的演变及其碳足迹,强调肋板的放弃主要是为了施工时间和成本效益。然而,高材料效率的双向肋板对于减少施工对环境的影响至关重要。因此,本文的第二部分讨论了数字制造如何帮助应对这一挑战,并介绍了四种使用数字制造模板建造的混凝土地板系统。用于生产这些板系统的数字制造技术包括数字切割、粘结剂喷射、聚合物挤出和3D混凝土打印。所介绍的应用表明,与实心板相比,混凝土使用量减少了约50%。然而,数字制造的复杂模板是浪费和/或劳动密集型的。需要进一步发展,通过简化生产、使用低碳混凝土混合物、重复使用和回收模板或在结构上激活原位模板,使数字流程具有可持续性和竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digitally fabricated ribbed concrete floor slabs: a sustainable solution for construction
The concrete used in floor slabs accounts for large greenhouse gas emissions in building construction. Solid slabs, often used today, consume much more concrete than ribbed slabs built by pioneer structural engineers like Hennebique, Arcangeli and Nervi. The first part of this paper analyses the evolution of slab systems over the last century and their carbon footprint, highlighting that ribbed slabs have been abandoned mainly for the sake of construction time and cost efficiency. However, highly material-efficient two-way ribbed slabs are essential to reduce the environmental impact of construction. Hence, the second part of this paper discusses how digital fabrication can help to tackle this challenge and presents four concrete floor systems built with digitally fabricated formwork. The digital fabrication technologies employed to produce these slab systems are digital cutting, binder-jetting, polymer extrusion and 3D concrete printing. The presented applications showcase a reduction in concrete use of approximately 50% compared to solid slabs. However, the digitally fabricated complex formworks produced were wasteful and/or labour-intensive. Further developments are required to make the digital processes sustainable and competitive by streamlining the production, using low carbon concrete mixes as well as reusing and recycling the formwork or structurally activating stay-in-place formwork.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RILEM Technical Letters
RILEM Technical Letters Materials Science-Materials Science (all)
CiteScore
5.00
自引率
0.00%
发文量
13
审稿时长
10 weeks
期刊最新文献
X-ray computed tomography to observe the presence of water in macropores of cementitious materials From tomographic imaging to numerical simulations: an open-source workflow for true morphology mesoscale FE meshes Mechanical characterisation of bamboo for construction: the state-of-practice and future prospects Processing of earth-based materials: current situation and challenges ahead Processing of earth-based materials: current situation and challenges ahead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1