pydiffusion:一个用于扩散模拟和数据分析的Python库

Q1 Social Sciences Journal of Open Research Software Pub Date : 2019-04-23 DOI:10.5334/jors.255
Zhangqi Chen, Qiaofu Zhang, Ji-Cheng Zhao
{"title":"pydiffusion:一个用于扩散模拟和数据分析的Python库","authors":"Zhangqi Chen, Qiaofu Zhang, Ji-Cheng Zhao","doi":"10.5334/jors.255","DOIUrl":null,"url":null,"abstract":"pydiffusion is a free and open-source Python library designed to solve diffusion problems for both single-phase and multi-phase binary systems. The key features of pydiffusion include fast simulation of multi-phase diffusion and extraction of diffusion coefficients from experimental concentration profiles using forward simulation analysis. pydiffusion also provides various mathematical models for diffusion profile smoothing, diffusion coefficient evaluation, and data optimization. In pydiffusion, diffusion profiles and various phases are easy to define or read from the experimental datasets. Visualization tools based on Matplotlib are also provided to help users present or refine their simulations and analysis. Funding statement: The development of pydiffusion is supported by the US National Science Foundation (NSF) under Grant number CMMI-1333999, and it is part of an NSF Designing Materials to Revolutionize and Engineer our Future (DMREF) project.","PeriodicalId":37323,"journal":{"name":"Journal of Open Research Software","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"pydiffusion: A Python Library for Diffusion Simulation and Data Analysis\",\"authors\":\"Zhangqi Chen, Qiaofu Zhang, Ji-Cheng Zhao\",\"doi\":\"10.5334/jors.255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"pydiffusion is a free and open-source Python library designed to solve diffusion problems for both single-phase and multi-phase binary systems. The key features of pydiffusion include fast simulation of multi-phase diffusion and extraction of diffusion coefficients from experimental concentration profiles using forward simulation analysis. pydiffusion also provides various mathematical models for diffusion profile smoothing, diffusion coefficient evaluation, and data optimization. In pydiffusion, diffusion profiles and various phases are easy to define or read from the experimental datasets. Visualization tools based on Matplotlib are also provided to help users present or refine their simulations and analysis. Funding statement: The development of pydiffusion is supported by the US National Science Foundation (NSF) under Grant number CMMI-1333999, and it is part of an NSF Designing Materials to Revolutionize and Engineer our Future (DMREF) project.\",\"PeriodicalId\":37323,\"journal\":{\"name\":\"Journal of Open Research Software\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Open Research Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/jors.255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Research Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/jors.255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 12

摘要

pydiffusion是一个免费的开源Python库,旨在解决单相和多相二元系统的扩散问题。pydiffusion的主要特点是快速模拟多相扩散和利用正演模拟分析从实验浓度曲线中提取扩散系数。Pydiffusion还为扩散曲线平滑、扩散系数评估和数据优化提供了各种数学模型。在pydiffusion中,扩散曲线和各种相很容易定义或从实验数据集中读取。还提供了基于Matplotlib的可视化工具来帮助用户呈现或改进他们的模拟和分析。资助声明:pydiffusion的发展得到了美国国家科学基金会(NSF)的支持,资助号为CMMI-1333999,它是NSF设计材料以革新和工程我们的未来(DMREF)项目的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pydiffusion: A Python Library for Diffusion Simulation and Data Analysis
pydiffusion is a free and open-source Python library designed to solve diffusion problems for both single-phase and multi-phase binary systems. The key features of pydiffusion include fast simulation of multi-phase diffusion and extraction of diffusion coefficients from experimental concentration profiles using forward simulation analysis. pydiffusion also provides various mathematical models for diffusion profile smoothing, diffusion coefficient evaluation, and data optimization. In pydiffusion, diffusion profiles and various phases are easy to define or read from the experimental datasets. Visualization tools based on Matplotlib are also provided to help users present or refine their simulations and analysis. Funding statement: The development of pydiffusion is supported by the US National Science Foundation (NSF) under Grant number CMMI-1333999, and it is part of an NSF Designing Materials to Revolutionize and Engineer our Future (DMREF) project.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Open Research Software
Journal of Open Research Software Social Sciences-Library and Information Sciences
CiteScore
6.50
自引率
0.00%
发文量
7
审稿时长
21 weeks
期刊最新文献
Taskfarm: A Client/Server Framework for Supporting Massive Embarrassingly Parallel Workloads GTdownloader: A Python Package to Download, Visualize, and Export Georeferenced Tweets From the Twitter API A NetHack Learning Environment Language Wrapper for Autonomous Agents Automated Discovery of Container Executables Fan-Slicer: A Pycuda Package for Fast Reslicing of Ultrasound Shaped Planes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1