西热带大西洋水团生物地球化学特征

Renan Evangelista Vieira, L. C. da Cunha, Luana Keiroz Pinho, Alexandre Macedo Fernandes, Raquel Da Conceicao Dos Santos, Ricardo Keim, Carlos Musetti De Assis, T. Franklin, Jessica da Silva Nogueira
{"title":"西热带大西洋水团生物地球化学特征","authors":"Renan Evangelista Vieira, L. C. da Cunha, Luana Keiroz Pinho, Alexandre Macedo Fernandes, Raquel Da Conceicao Dos Santos, Ricardo Keim, Carlos Musetti De Assis, T. Franklin, Jessica da Silva Nogueira","doi":"10.11137/1982-3908_2022_45_45732","DOIUrl":null,"url":null,"abstract":"Water masses are commonly identified according to their conservative parameters. However, there are also studies that use non-conservative parameters, together with the conservative ones, to refine the water masses identification. The aim of this study was to analyze the chemical properties of the water masses in the western tropical Atlantic Ocean (WTAO) according to their inorganic nutrient concentration: nitrate-NO3–, phosphate-PO43–, and silicic acid-Si(OH)4, to set a regional descriptive framework of the water column in view of future comparative studies. We collected full-depth water column samples from 18 oceanographic stations from a latitudinal transect along 38°W, from 02°S to 15°N during the PIRATA-BR XVII and XVIII campaigns, in November 2017 and 2018. We have also used the regional data available from GLODAPv.2 data product to improve the water masses characterization. Six water masses were identified in the region based on their values of potential temperature, salinity, potential density, and neutral density observed in the study area according to the CTD-O2 data: Tropical Surface Water (TSW); South and North Atlantic Central Water (SACW and NACW, respectively); Antarctic Intermediate Water (AAIW); North Atlantic Deep Water (NADW); and Antarctic Bottom Water (AABW). Regarding the nutrient content within each water mass, our results showed that TSW corresponds to a surface oligotrophic water; NACW and SACW have intermediate nutrient concentration values between TSW and AAIW; AAIW showed the highest concentration of phosphate-PO43– (~ 1.35 µmol kg–1) and nitrate-NO3– (~30 µmol kg–1); AABW, on the other hand, was the water mass with the highest silicic acid-Si(OH)4 concentration (~ 80 µmol kg–1), as well as high nitrate-NO3– (~ 25 µmol kg–1) and phosphate-PO43– (~ 1.80 µmol kg–1) concentrations. Additionally, the water column between 300 and 650 m displays an increase in phosphate-PO43– concentrations north of 5oN, associated to a low dissolved oxygen area coupled to the North Equatorial Under Current (NEUC). Long-term, sustained hydrographic and ocean biogeochemistry observations are key to understand how climate change is affecting the ocean, and this study is a contribution to that.","PeriodicalId":39973,"journal":{"name":"Anuario do Instituto de Geociencias","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogeochemical Characteristics of Western Tropical Atlantic Ocean Water Masses\",\"authors\":\"Renan Evangelista Vieira, L. C. da Cunha, Luana Keiroz Pinho, Alexandre Macedo Fernandes, Raquel Da Conceicao Dos Santos, Ricardo Keim, Carlos Musetti De Assis, T. Franklin, Jessica da Silva Nogueira\",\"doi\":\"10.11137/1982-3908_2022_45_45732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water masses are commonly identified according to their conservative parameters. However, there are also studies that use non-conservative parameters, together with the conservative ones, to refine the water masses identification. The aim of this study was to analyze the chemical properties of the water masses in the western tropical Atlantic Ocean (WTAO) according to their inorganic nutrient concentration: nitrate-NO3–, phosphate-PO43–, and silicic acid-Si(OH)4, to set a regional descriptive framework of the water column in view of future comparative studies. We collected full-depth water column samples from 18 oceanographic stations from a latitudinal transect along 38°W, from 02°S to 15°N during the PIRATA-BR XVII and XVIII campaigns, in November 2017 and 2018. We have also used the regional data available from GLODAPv.2 data product to improve the water masses characterization. Six water masses were identified in the region based on their values of potential temperature, salinity, potential density, and neutral density observed in the study area according to the CTD-O2 data: Tropical Surface Water (TSW); South and North Atlantic Central Water (SACW and NACW, respectively); Antarctic Intermediate Water (AAIW); North Atlantic Deep Water (NADW); and Antarctic Bottom Water (AABW). Regarding the nutrient content within each water mass, our results showed that TSW corresponds to a surface oligotrophic water; NACW and SACW have intermediate nutrient concentration values between TSW and AAIW; AAIW showed the highest concentration of phosphate-PO43– (~ 1.35 µmol kg–1) and nitrate-NO3– (~30 µmol kg–1); AABW, on the other hand, was the water mass with the highest silicic acid-Si(OH)4 concentration (~ 80 µmol kg–1), as well as high nitrate-NO3– (~ 25 µmol kg–1) and phosphate-PO43– (~ 1.80 µmol kg–1) concentrations. Additionally, the water column between 300 and 650 m displays an increase in phosphate-PO43– concentrations north of 5oN, associated to a low dissolved oxygen area coupled to the North Equatorial Under Current (NEUC). Long-term, sustained hydrographic and ocean biogeochemistry observations are key to understand how climate change is affecting the ocean, and this study is a contribution to that.\",\"PeriodicalId\":39973,\"journal\":{\"name\":\"Anuario do Instituto de Geociencias\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anuario do Instituto de Geociencias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11137/1982-3908_2022_45_45732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anuario do Instituto de Geociencias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11137/1982-3908_2022_45_45732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

水团通常根据其保守参数进行识别。然而,也有研究使用非保守参数和保守参数来完善水团识别。本研究的目的是根据其无机营养物浓度:硝酸盐-NO3–、磷酸盐-PO43–和硅酸Si(OH)4来分析热带大西洋西部(WTAO)水体的化学性质,以建立一个区域水柱描述框架,以供未来的比较研究。2017年11月和2018年11月,在PIRATA-BR XVII和XVIII运动期间,我们从38°W、02°S至15°N的纬向横断面上收集了18个海洋学站的全深度水柱样本。我们还使用了GLODAPv.2数据产品中的区域数据来改进水团特征。根据CTD-O2数据,根据研究区域内观测到的潜在温度、盐度、潜在密度和中性密度值,在该区域确定了六个水团:热带地表水(TSW);南大西洋和北大西洋中央水域(分别为SACW和NACW);南极中间水;北大西洋深水区;和南极底层水(AABW)。关于每个水体中的营养物质含量,我们的结果表明,TSW对应于表面贫营养水;NACW和SACW具有介于TSW和AAIW之间的中间营养物浓度值;AAIW显示出最高浓度的磷酸盐-PO43–(~1.35µmol kg–1)和硝酸盐-NO3–(~30µmol kg-1);另一方面,AABW是具有最高硅酸Si(OH)4浓度(~80µmol kg–1)以及高硝酸盐-NO3–(~25µmol kg-1)和磷酸盐-PO43–(~1.80µmol kg-1)浓度的水体。此外,300米至650米之间的水柱显示,5oN以北的磷酸盐PO43浓度增加,这与北赤道洋流(NEUC)耦合的低溶解氧区域有关。长期、持续的水文和海洋生物地球化学观测是了解气候变化如何影响海洋的关键,这项研究对此做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biogeochemical Characteristics of Western Tropical Atlantic Ocean Water Masses
Water masses are commonly identified according to their conservative parameters. However, there are also studies that use non-conservative parameters, together with the conservative ones, to refine the water masses identification. The aim of this study was to analyze the chemical properties of the water masses in the western tropical Atlantic Ocean (WTAO) according to their inorganic nutrient concentration: nitrate-NO3–, phosphate-PO43–, and silicic acid-Si(OH)4, to set a regional descriptive framework of the water column in view of future comparative studies. We collected full-depth water column samples from 18 oceanographic stations from a latitudinal transect along 38°W, from 02°S to 15°N during the PIRATA-BR XVII and XVIII campaigns, in November 2017 and 2018. We have also used the regional data available from GLODAPv.2 data product to improve the water masses characterization. Six water masses were identified in the region based on their values of potential temperature, salinity, potential density, and neutral density observed in the study area according to the CTD-O2 data: Tropical Surface Water (TSW); South and North Atlantic Central Water (SACW and NACW, respectively); Antarctic Intermediate Water (AAIW); North Atlantic Deep Water (NADW); and Antarctic Bottom Water (AABW). Regarding the nutrient content within each water mass, our results showed that TSW corresponds to a surface oligotrophic water; NACW and SACW have intermediate nutrient concentration values between TSW and AAIW; AAIW showed the highest concentration of phosphate-PO43– (~ 1.35 µmol kg–1) and nitrate-NO3– (~30 µmol kg–1); AABW, on the other hand, was the water mass with the highest silicic acid-Si(OH)4 concentration (~ 80 µmol kg–1), as well as high nitrate-NO3– (~ 25 µmol kg–1) and phosphate-PO43– (~ 1.80 µmol kg–1) concentrations. Additionally, the water column between 300 and 650 m displays an increase in phosphate-PO43– concentrations north of 5oN, associated to a low dissolved oxygen area coupled to the North Equatorial Under Current (NEUC). Long-term, sustained hydrographic and ocean biogeochemistry observations are key to understand how climate change is affecting the ocean, and this study is a contribution to that.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anuario do Instituto de Geociencias
Anuario do Instituto de Geociencias Social Sciences-Geography, Planning and Development
CiteScore
0.70
自引率
0.00%
发文量
45
审稿时长
28 weeks
期刊介绍: The Anuário do Instituto de Geociências (Anuário IGEO) is an official publication of the Universidade Federal do Rio de Janeiro (UFRJ – CCMN) with the objective to publish original scientific papers of broad interest in the field of Geology, Paleontology, Geography and Meteorology.
期刊最新文献
Evaluation of Precipitation Simulations at the Subseasonal Range in the Sao Francisco River Basin, Brazil Classification of Urban Solid Waste Collected with the Use of Ecobarriers in Watercourses in the Municipality of Caçapava do Sul, RS How Eco-Spatial Edutourism Support Sustainability in Coastal Areas in South Malang, Indonesia? Semiautomatic Mapping of Center Pivot Irrigated Areas Using Sentinel-2 Images and GEOBIA Approach Characterization and Geological Meaning of the Crystalline Basement Occurrence in the Unaí Region, Minas Gerais State (Central Brasilia Belt)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1