A. Dumlu, M. Mahboubkhah, K. K. Ayten, Gurkan Kalinay
{"title":"一种新型五自由度三维打印机机器人系统的数学分析与设计","authors":"A. Dumlu, M. Mahboubkhah, K. K. Ayten, Gurkan Kalinay","doi":"10.5755/j02.eie.31383","DOIUrl":null,"url":null,"abstract":"In this study, the mathematical analysis and design of a new 3D printer with 5 degrees of freedom were carried out. Thanks to the developed system, a new concept has been brought to the multi-axis 3D printer mechanisms, and thus, it is aimed to improve the part quality in additive manufacturing (AM) processes. As a result of adding the 4th and 5th axes to the moving platform of the system, the production time of the part was accelerated. It is also possible to print more complex and curved shapes with less support. To design a system with these features, first of all, the kinematic analysis of the system was obtained using vector algebra, and the workspace of the current printer was determined by considering the system constraints in this article. By giving detailed information about the mechanical and electrical components of the designed system, the working principle of the whole system is presented. According to the findings obtained in the studies, the kinematic analyses performed for the proposed system proved to be correct and a new system was proposed especially for additive manufacturing technologies.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Analysis and Design of a Novel 5-DOF 3D Printer Robotic System\",\"authors\":\"A. Dumlu, M. Mahboubkhah, K. K. Ayten, Gurkan Kalinay\",\"doi\":\"10.5755/j02.eie.31383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the mathematical analysis and design of a new 3D printer with 5 degrees of freedom were carried out. Thanks to the developed system, a new concept has been brought to the multi-axis 3D printer mechanisms, and thus, it is aimed to improve the part quality in additive manufacturing (AM) processes. As a result of adding the 4th and 5th axes to the moving platform of the system, the production time of the part was accelerated. It is also possible to print more complex and curved shapes with less support. To design a system with these features, first of all, the kinematic analysis of the system was obtained using vector algebra, and the workspace of the current printer was determined by considering the system constraints in this article. By giving detailed information about the mechanical and electrical components of the designed system, the working principle of the whole system is presented. According to the findings obtained in the studies, the kinematic analyses performed for the proposed system proved to be correct and a new system was proposed especially for additive manufacturing technologies.\",\"PeriodicalId\":51031,\"journal\":{\"name\":\"Elektronika Ir Elektrotechnika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika Ir Elektrotechnika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.31383\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.31383","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Mathematical Analysis and Design of a Novel 5-DOF 3D Printer Robotic System
In this study, the mathematical analysis and design of a new 3D printer with 5 degrees of freedom were carried out. Thanks to the developed system, a new concept has been brought to the multi-axis 3D printer mechanisms, and thus, it is aimed to improve the part quality in additive manufacturing (AM) processes. As a result of adding the 4th and 5th axes to the moving platform of the system, the production time of the part was accelerated. It is also possible to print more complex and curved shapes with less support. To design a system with these features, first of all, the kinematic analysis of the system was obtained using vector algebra, and the workspace of the current printer was determined by considering the system constraints in this article. By giving detailed information about the mechanical and electrical components of the designed system, the working principle of the whole system is presented. According to the findings obtained in the studies, the kinematic analyses performed for the proposed system proved to be correct and a new system was proposed especially for additive manufacturing technologies.
期刊介绍:
The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible.
The journal publishes regular papers dealing with the following areas, but not limited to:
Electronics;
Electronic Measurements;
Signal Technology;
Microelectronics;
High Frequency Technology, Microwaves.
Electrical Engineering;
Renewable Energy;
Automation, Robotics;
Telecommunications Engineering.