H. Darabi, A. Danandeh Mehr, Gülşen Kum, M. Sönmez, C. Dumitrache, Khadija Diani, A. Çelebi, Ali Torabi Haghighi
{"title":"杰伊汉河流域的水文气候趋势和干旱风险评估:SPI和STI指数的启示","authors":"H. Darabi, A. Danandeh Mehr, Gülşen Kum, M. Sönmez, C. Dumitrache, Khadija Diani, A. Çelebi, Ali Torabi Haghighi","doi":"10.3390/hydrology10080157","DOIUrl":null,"url":null,"abstract":"This study examined the spatiotemporal climate variability over the Ceyhan River basin in Southern Anatolia, Türkiye using historical rainfall and temperature observations recorded at 15 meteorology stations. Various statistical and geostatistical techniques were employed to determine the significance of trends for each climatic variable in the whole basin and its three sub-regions (northern, central, and southern regions). The results revealed that the recent years in the basin were generally warmer compared with previous years, with a temperature increase of approximately 4 °C. The standardized temperature index analysis indicated a shift towards hotter periods after 2005, while the coldest periods were observed in the early 1990s. The spatial distribution of temperature showed non-uniform patterns throughout the basin. The first decade of the study period (1975–1984) was characterized by relatively cold temperatures, followed by a transition period from cold to hot between 1985 and 2004, and a hotter period in the last decade (2005–2014). The rainfall analysis indicated a decreasing trend in annual rainfall, particularly in the northern and central regions of the basin. However, the southern region showed an increasing trend in annual rainfall during the study period. The spatial distribution of rainfall exhibited considerable variability across the basin, with different regions experiencing distinct patterns. The standardized precipitation index analysis revealed the occurrence of multiple drought events throughout the study period. The most severe and prolonged droughts were observed in the years 1992–1996 and 2007–2010. These drought events had significant impacts on water availability and agricultural productivity in the basin.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydroclimatic Trends and Drought Risk Assessment in the Ceyhan River Basin: Insights from SPI and STI Indices\",\"authors\":\"H. Darabi, A. Danandeh Mehr, Gülşen Kum, M. Sönmez, C. Dumitrache, Khadija Diani, A. Çelebi, Ali Torabi Haghighi\",\"doi\":\"10.3390/hydrology10080157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined the spatiotemporal climate variability over the Ceyhan River basin in Southern Anatolia, Türkiye using historical rainfall and temperature observations recorded at 15 meteorology stations. Various statistical and geostatistical techniques were employed to determine the significance of trends for each climatic variable in the whole basin and its three sub-regions (northern, central, and southern regions). The results revealed that the recent years in the basin were generally warmer compared with previous years, with a temperature increase of approximately 4 °C. The standardized temperature index analysis indicated a shift towards hotter periods after 2005, while the coldest periods were observed in the early 1990s. The spatial distribution of temperature showed non-uniform patterns throughout the basin. The first decade of the study period (1975–1984) was characterized by relatively cold temperatures, followed by a transition period from cold to hot between 1985 and 2004, and a hotter period in the last decade (2005–2014). The rainfall analysis indicated a decreasing trend in annual rainfall, particularly in the northern and central regions of the basin. However, the southern region showed an increasing trend in annual rainfall during the study period. The spatial distribution of rainfall exhibited considerable variability across the basin, with different regions experiencing distinct patterns. The standardized precipitation index analysis revealed the occurrence of multiple drought events throughout the study period. The most severe and prolonged droughts were observed in the years 1992–1996 and 2007–2010. These drought events had significant impacts on water availability and agricultural productivity in the basin.\",\"PeriodicalId\":37372,\"journal\":{\"name\":\"Hydrology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology10080157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10080157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Hydroclimatic Trends and Drought Risk Assessment in the Ceyhan River Basin: Insights from SPI and STI Indices
This study examined the spatiotemporal climate variability over the Ceyhan River basin in Southern Anatolia, Türkiye using historical rainfall and temperature observations recorded at 15 meteorology stations. Various statistical and geostatistical techniques were employed to determine the significance of trends for each climatic variable in the whole basin and its three sub-regions (northern, central, and southern regions). The results revealed that the recent years in the basin were generally warmer compared with previous years, with a temperature increase of approximately 4 °C. The standardized temperature index analysis indicated a shift towards hotter periods after 2005, while the coldest periods were observed in the early 1990s. The spatial distribution of temperature showed non-uniform patterns throughout the basin. The first decade of the study period (1975–1984) was characterized by relatively cold temperatures, followed by a transition period from cold to hot between 1985 and 2004, and a hotter period in the last decade (2005–2014). The rainfall analysis indicated a decreasing trend in annual rainfall, particularly in the northern and central regions of the basin. However, the southern region showed an increasing trend in annual rainfall during the study period. The spatial distribution of rainfall exhibited considerable variability across the basin, with different regions experiencing distinct patterns. The standardized precipitation index analysis revealed the occurrence of multiple drought events throughout the study period. The most severe and prolonged droughts were observed in the years 1992–1996 and 2007–2010. These drought events had significant impacts on water availability and agricultural productivity in the basin.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.