基于移动传感稀疏数据的行为预测鲁棒模型设计

Seyma Kucukozer-Cavdar, T. Taşkaya-Temizel, Abhinav Mehrotra, Mirco Musolesi, P. Tiňo
{"title":"基于移动传感稀疏数据的行为预测鲁棒模型设计","authors":"Seyma Kucukozer-Cavdar, T. Taşkaya-Temizel, Abhinav Mehrotra, Mirco Musolesi, P. Tiňo","doi":"10.1145/3458753","DOIUrl":null,"url":null,"abstract":"Understanding in which circumstances office workers take rest breaks is important for delivering effective mobile notifications and make inferences about their daily lifestyle, e.g., whether they are active and/or have a sedentary life. Previous studies designed for office workers show the effectiveness of rest breaks for preventing work-related conditions. In this article, we propose a hybrid personalised model involving a kernel density estimation model and a generalised linear mixed model to model office workers’ available moments for rest breaks during working hours. We adopt the experience-based sampling method through which we collected office workers’ responses regarding their availability through a mobile application with contextual information extracted by means of the mobile phone sensors. The experiment lasted 10 workdays and involved 19 office workers with a total of 528 responses. Our results show that time, location, ringer mode, and activity are effective features for predicting office workers’ availability. Our method can address sparse sample issues for building individual predictive behavioural models based on limited and unbalanced data. In particular, the proposed method can be considered as a potential solution to the “cold-start problem,” i.e., the negative impact of the lack of individual data when a new application is installed.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":" ","pages":"1 - 33"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3458753","citationCount":"5","resultStr":"{\"title\":\"Designing Robust Models for Behaviour Prediction Using Sparse Data from Mobile Sensing\",\"authors\":\"Seyma Kucukozer-Cavdar, T. Taşkaya-Temizel, Abhinav Mehrotra, Mirco Musolesi, P. Tiňo\",\"doi\":\"10.1145/3458753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding in which circumstances office workers take rest breaks is important for delivering effective mobile notifications and make inferences about their daily lifestyle, e.g., whether they are active and/or have a sedentary life. Previous studies designed for office workers show the effectiveness of rest breaks for preventing work-related conditions. In this article, we propose a hybrid personalised model involving a kernel density estimation model and a generalised linear mixed model to model office workers’ available moments for rest breaks during working hours. We adopt the experience-based sampling method through which we collected office workers’ responses regarding their availability through a mobile application with contextual information extracted by means of the mobile phone sensors. The experiment lasted 10 workdays and involved 19 office workers with a total of 528 responses. Our results show that time, location, ringer mode, and activity are effective features for predicting office workers’ availability. Our method can address sparse sample issues for building individual predictive behavioural models based on limited and unbalanced data. In particular, the proposed method can be considered as a potential solution to the “cold-start problem,” i.e., the negative impact of the lack of individual data when a new application is installed.\",\"PeriodicalId\":72043,\"journal\":{\"name\":\"ACM transactions on computing for healthcare\",\"volume\":\" \",\"pages\":\"1 - 33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3458753\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM transactions on computing for healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3458753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

了解上班族在哪些情况下休息对于提供有效的移动通知和推断他们的日常生活方式很重要,例如,他们是否活跃和/或久坐不动。以前为上班族设计的研究表明,休息时间对预防与工作相关的疾病是有效的。在这篇文章中,我们提出了一个混合个性化模型,包括核密度估计模型和广义线性混合模型,以模拟上班族在工作时间休息的可用时间。我们采用基于经验的抽样方法,通过移动应用程序收集办公室工作人员对其可用性的反应,并通过手机传感器提取上下文信息。这项实验持续了10个工作日,涉及19名上班族,共有528条回复。我们的研究结果表明,时间、地点、铃声模式和活动是预测上班族可用性的有效特征。我们的方法可以解决基于有限和不平衡数据构建个人预测行为模型的稀疏样本问题。特别是,所提出的方法可以被视为“冷启动问题”的潜在解决方案,即安装新应用程序时缺乏单个数据的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing Robust Models for Behaviour Prediction Using Sparse Data from Mobile Sensing
Understanding in which circumstances office workers take rest breaks is important for delivering effective mobile notifications and make inferences about their daily lifestyle, e.g., whether they are active and/or have a sedentary life. Previous studies designed for office workers show the effectiveness of rest breaks for preventing work-related conditions. In this article, we propose a hybrid personalised model involving a kernel density estimation model and a generalised linear mixed model to model office workers’ available moments for rest breaks during working hours. We adopt the experience-based sampling method through which we collected office workers’ responses regarding their availability through a mobile application with contextual information extracted by means of the mobile phone sensors. The experiment lasted 10 workdays and involved 19 office workers with a total of 528 responses. Our results show that time, location, ringer mode, and activity are effective features for predicting office workers’ availability. Our method can address sparse sample issues for building individual predictive behavioural models based on limited and unbalanced data. In particular, the proposed method can be considered as a potential solution to the “cold-start problem,” i.e., the negative impact of the lack of individual data when a new application is installed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
期刊最新文献
A method for comparing time series by untangling time-dependent and independent variations in biological processes AI-assisted Diagnosing, Monitoring, and Treatment of Mental Disorders: A Survey HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification iScan: Detection of Colorectal Cancer From CT Scan Images Using Deep Learning A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1