{"title":"导电聚合物/SiO2复合材料作为低碳钢二氧化碳腐蚀的防腐涂层。模拟研究","authors":"Kh. Avchukir, B. D. Burkitbayeva","doi":"10.18321/ectj991","DOIUrl":null,"url":null,"abstract":"In this work corrosion of mild steel affected by carbon dioxide was studied using a simulation model developed by Nordsveen M. and Nesic S. Using this comprehensive model of the uniform corrosion made possible to predict of corrosion rate of steel in the carbonic acid medium and the influence of different conditions on the anticorrosive property of coated electrode has been investigated. 1D model of corrosion process includes Butler-Volmer and Tafel equations and takes into account both the kinetics of anodic dissolution of an iron and electrochemical discharge of carbonic acid, water and hydrogen ions. The model has been created in COMSOL Multiphysics software and further improvement of this model allowed studying the influence of parameters such as solution composition, the partial pressure of CO2, temperature and flow velocity of the solution on the corrosion rate of the steel. The results of numerical simulation demonstrate that the use of conductive polymerpolypyrrole/ SiO2 composite as an anti-corrosive resin coating reduces the corrosion rate of mild steel by 7 times or more, depending on pH, temperature and flow rate. Furthermore, increasing of flow velocity from 0.1 to 10 m/s affects to the removal of corrosion products from the surface of mild steel and as a result corrosion rate raises from 0.3 to 0.45 mm/year at a temperature of 80 °C and pH=4.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Conductive Polymer/SiO2 Composite as an Anticorrosive Coating Against Carbon Dioxide Corrosion of Mild Steel. A Simulation Study\",\"authors\":\"Kh. Avchukir, B. D. Burkitbayeva\",\"doi\":\"10.18321/ectj991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work corrosion of mild steel affected by carbon dioxide was studied using a simulation model developed by Nordsveen M. and Nesic S. Using this comprehensive model of the uniform corrosion made possible to predict of corrosion rate of steel in the carbonic acid medium and the influence of different conditions on the anticorrosive property of coated electrode has been investigated. 1D model of corrosion process includes Butler-Volmer and Tafel equations and takes into account both the kinetics of anodic dissolution of an iron and electrochemical discharge of carbonic acid, water and hydrogen ions. The model has been created in COMSOL Multiphysics software and further improvement of this model allowed studying the influence of parameters such as solution composition, the partial pressure of CO2, temperature and flow velocity of the solution on the corrosion rate of the steel. The results of numerical simulation demonstrate that the use of conductive polymerpolypyrrole/ SiO2 composite as an anti-corrosive resin coating reduces the corrosion rate of mild steel by 7 times or more, depending on pH, temperature and flow rate. Furthermore, increasing of flow velocity from 0.1 to 10 m/s affects to the removal of corrosion products from the surface of mild steel and as a result corrosion rate raises from 0.3 to 0.45 mm/year at a temperature of 80 °C and pH=4.\",\"PeriodicalId\":11795,\"journal\":{\"name\":\"Eurasian Chemico-Technological Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Chemico-Technological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18321/ectj991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Conductive Polymer/SiO2 Composite as an Anticorrosive Coating Against Carbon Dioxide Corrosion of Mild Steel. A Simulation Study
In this work corrosion of mild steel affected by carbon dioxide was studied using a simulation model developed by Nordsveen M. and Nesic S. Using this comprehensive model of the uniform corrosion made possible to predict of corrosion rate of steel in the carbonic acid medium and the influence of different conditions on the anticorrosive property of coated electrode has been investigated. 1D model of corrosion process includes Butler-Volmer and Tafel equations and takes into account both the kinetics of anodic dissolution of an iron and electrochemical discharge of carbonic acid, water and hydrogen ions. The model has been created in COMSOL Multiphysics software and further improvement of this model allowed studying the influence of parameters such as solution composition, the partial pressure of CO2, temperature and flow velocity of the solution on the corrosion rate of the steel. The results of numerical simulation demonstrate that the use of conductive polymerpolypyrrole/ SiO2 composite as an anti-corrosive resin coating reduces the corrosion rate of mild steel by 7 times or more, depending on pH, temperature and flow rate. Furthermore, increasing of flow velocity from 0.1 to 10 m/s affects to the removal of corrosion products from the surface of mild steel and as a result corrosion rate raises from 0.3 to 0.45 mm/year at a temperature of 80 °C and pH=4.
期刊介绍:
The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.