Chenxin Zhao, Hongzhao Dong, Kai Wang, Jianwen Shao, Cunbin Zhao
{"title":"设置交叉口间歇公交引道:一种新的基于车道复用的交叉口信号协调模型方法","authors":"Chenxin Zhao, Hongzhao Dong, Kai Wang, Jianwen Shao, Cunbin Zhao","doi":"10.3390/app131810098","DOIUrl":null,"url":null,"abstract":"Intermittent bus lanes (IBLs) can alleviate the contradiction between bus priority and the urgent demand of general vehicles for road resources. However, existing IBL strategies seldom pay attention to the setting method of the dynamic bus lanes at intersections, which leads to the still serious delay of buses at intersections in the traffic congestion environment. To tackle this issue, this research explores a novel method of setting the intermittent bus approach (IBA) of intersections for lane sharing and bus priority at intersections. In particular, a time slice division strategy with an intersection signal coordination model is developed to fully and reasonably allocate the idle time of bus lanes at intersections. Besides, considering the lane-changing demands of general vehicles at intersections, the parameters of the IBA lane system are modeled and optimized. For testing and verifying the feasibility of the proposed method, comparative experiments are conducted through microscopic traffic simulation. Results show that the proposed IBA setting method can effectively solve the problem of bus priority failure at intersections. It can maintain the continuity of vehicle running on intersection sections, which better exerts the operational benefits of dynamic bus lanes.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Setting the Intermittent Bus Approach of Intersections: A Novel Lane Multiplexing-Based Method with an Intersection Signal Coordination Model\",\"authors\":\"Chenxin Zhao, Hongzhao Dong, Kai Wang, Jianwen Shao, Cunbin Zhao\",\"doi\":\"10.3390/app131810098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intermittent bus lanes (IBLs) can alleviate the contradiction between bus priority and the urgent demand of general vehicles for road resources. However, existing IBL strategies seldom pay attention to the setting method of the dynamic bus lanes at intersections, which leads to the still serious delay of buses at intersections in the traffic congestion environment. To tackle this issue, this research explores a novel method of setting the intermittent bus approach (IBA) of intersections for lane sharing and bus priority at intersections. In particular, a time slice division strategy with an intersection signal coordination model is developed to fully and reasonably allocate the idle time of bus lanes at intersections. Besides, considering the lane-changing demands of general vehicles at intersections, the parameters of the IBA lane system are modeled and optimized. For testing and verifying the feasibility of the proposed method, comparative experiments are conducted through microscopic traffic simulation. Results show that the proposed IBA setting method can effectively solve the problem of bus priority failure at intersections. It can maintain the continuity of vehicle running on intersection sections, which better exerts the operational benefits of dynamic bus lanes.\",\"PeriodicalId\":48760,\"journal\":{\"name\":\"Applied Sciences-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences-Basel\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/app131810098\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810098","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Setting the Intermittent Bus Approach of Intersections: A Novel Lane Multiplexing-Based Method with an Intersection Signal Coordination Model
Intermittent bus lanes (IBLs) can alleviate the contradiction between bus priority and the urgent demand of general vehicles for road resources. However, existing IBL strategies seldom pay attention to the setting method of the dynamic bus lanes at intersections, which leads to the still serious delay of buses at intersections in the traffic congestion environment. To tackle this issue, this research explores a novel method of setting the intermittent bus approach (IBA) of intersections for lane sharing and bus priority at intersections. In particular, a time slice division strategy with an intersection signal coordination model is developed to fully and reasonably allocate the idle time of bus lanes at intersections. Besides, considering the lane-changing demands of general vehicles at intersections, the parameters of the IBA lane system are modeled and optimized. For testing and verifying the feasibility of the proposed method, comparative experiments are conducted through microscopic traffic simulation. Results show that the proposed IBA setting method can effectively solve the problem of bus priority failure at intersections. It can maintain the continuity of vehicle running on intersection sections, which better exerts the operational benefits of dynamic bus lanes.
期刊介绍:
Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.