Bably Khatun, Munmi Majumder, R. Mukhopadhyay, Rafika Yasmin, Robin Doley, T. K. Maji
{"title":"姜黄素-羟丙基- \\(\\beta\\) -环糊精配合物及其负载明胶卡拉胶微粒对各种化学和生物特性的影响","authors":"Bably Khatun, Munmi Majumder, R. Mukhopadhyay, Rafika Yasmin, Robin Doley, T. K. Maji","doi":"10.1007/s12247-021-09559-0","DOIUrl":null,"url":null,"abstract":"<p>Curcumin was modified with 2-hydroxypropyl-<span>\\(\\beta\\)</span>-cyclodextrin (HP<span>\\(\\beta\\)</span>CD) to enhance its bioavailability. The modified curcumin was loaded into gelatin-carrageenan microparticles to control the drug release behavior. The different analytical techniques like Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) indicated the formation of the samples. The solubility of the modified curcumin was checked visibly and by using UV-VIS spectroscopy & optical microscopy as well. The effect of surfactant on process yield, drug loading & encapsulation efficiency, swelling and drug release from the microparticles was checked. The samples exhibited more swelling and hence drug release was more in basic compared to acidic medium and the percentage increased with increase in time. The modified curcumin, on examining in both breast and lung cancer cell lines, manifested better anticancer activity compared to curcumin as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, clonogenic assay and apoptosis assay. However, the microparticles didn’t reveal better anticancer activities compared to curcumin and modified curcumin. Further, all the prepared samples were found to be non-toxic to human peripheral blood mononuclear cells (PBMCs) and red blood cells (RBCs).</p>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"17 3","pages":"806 - 820"},"PeriodicalIF":2.7000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12247-021-09559-0","citationCount":"1","resultStr":"{\"title\":\"Effect of Curcumin-Hydroxypropyl-\\\\(\\\\beta\\\\)-Cyclodextrin Complex and the Complex Loaded Gelatin Carrageenan Microparticles on the Various Chemical and Biological Properties\",\"authors\":\"Bably Khatun, Munmi Majumder, R. Mukhopadhyay, Rafika Yasmin, Robin Doley, T. K. Maji\",\"doi\":\"10.1007/s12247-021-09559-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Curcumin was modified with 2-hydroxypropyl-<span>\\\\(\\\\beta\\\\)</span>-cyclodextrin (HP<span>\\\\(\\\\beta\\\\)</span>CD) to enhance its bioavailability. The modified curcumin was loaded into gelatin-carrageenan microparticles to control the drug release behavior. The different analytical techniques like Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) indicated the formation of the samples. The solubility of the modified curcumin was checked visibly and by using UV-VIS spectroscopy & optical microscopy as well. The effect of surfactant on process yield, drug loading & encapsulation efficiency, swelling and drug release from the microparticles was checked. The samples exhibited more swelling and hence drug release was more in basic compared to acidic medium and the percentage increased with increase in time. The modified curcumin, on examining in both breast and lung cancer cell lines, manifested better anticancer activity compared to curcumin as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, clonogenic assay and apoptosis assay. However, the microparticles didn’t reveal better anticancer activities compared to curcumin and modified curcumin. Further, all the prepared samples were found to be non-toxic to human peripheral blood mononuclear cells (PBMCs) and red blood cells (RBCs).</p>\",\"PeriodicalId\":656,\"journal\":{\"name\":\"Journal of Pharmaceutical Innovation\",\"volume\":\"17 3\",\"pages\":\"806 - 820\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12247-021-09559-0\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmaceutical Innovation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12247-021-09559-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Innovation","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12247-021-09559-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Effect of Curcumin-Hydroxypropyl-\(\beta\)-Cyclodextrin Complex and the Complex Loaded Gelatin Carrageenan Microparticles on the Various Chemical and Biological Properties
Curcumin was modified with 2-hydroxypropyl-\(\beta\)-cyclodextrin (HP\(\beta\)CD) to enhance its bioavailability. The modified curcumin was loaded into gelatin-carrageenan microparticles to control the drug release behavior. The different analytical techniques like Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) indicated the formation of the samples. The solubility of the modified curcumin was checked visibly and by using UV-VIS spectroscopy & optical microscopy as well. The effect of surfactant on process yield, drug loading & encapsulation efficiency, swelling and drug release from the microparticles was checked. The samples exhibited more swelling and hence drug release was more in basic compared to acidic medium and the percentage increased with increase in time. The modified curcumin, on examining in both breast and lung cancer cell lines, manifested better anticancer activity compared to curcumin as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, clonogenic assay and apoptosis assay. However, the microparticles didn’t reveal better anticancer activities compared to curcumin and modified curcumin. Further, all the prepared samples were found to be non-toxic to human peripheral blood mononuclear cells (PBMCs) and red blood cells (RBCs).
期刊介绍:
The Journal of Pharmaceutical Innovation (JPI), is an international, multidisciplinary peer-reviewed scientific journal dedicated to publishing high quality papers emphasizing innovative research and applied technologies within the pharmaceutical and biotechnology industries. JPI''s goal is to be the premier communication vehicle for the critical body of knowledge that is needed for scientific evolution and technical innovation, from R&D to market. Topics will fall under the following categories:
Materials science,
Product design,
Process design, optimization, automation and control,
Facilities; Information management,
Regulatory policy and strategy,
Supply chain developments ,
Education and professional development,
Journal of Pharmaceutical Innovation publishes four issues a year.