活性玻碳电极电化学检测H2O2

P. Murugan, Ramila D. Nagarajan, A. Sundramoorthy, Dhanraj M. Ganapathy, R. Atchudan, D. Nallaswamy, A. Khosla
{"title":"活性玻碳电极电化学检测H2O2","authors":"P. Murugan, Ramila D. Nagarajan, A. Sundramoorthy, Dhanraj M. Ganapathy, R. Atchudan, D. Nallaswamy, A. Khosla","doi":"10.1149/2754-2726/ac7c78","DOIUrl":null,"url":null,"abstract":"Hydrogen peroxide (H2O2) is extensively used for sterilization purposes in the food industries and pharmaceuticals as an antimicrobial agent. According to the Food and Agriculture Organization (FAO), the permissible level of H2O2 in milk is in the range of 0.04 to 0.05% w/v, so it has been prohibited to use as a preservative agent. Herein, we reported the electrochemical sensing of H2O2 in milk samples using an activated glassy carbon electrode (AGCE). For this purpose, activation of GCE was carried out in 0.1 M H2SO4 by continuous potential sweeping between −0.7 to 1.8 V for 25 cycles. The AGCE showed a redox peak at -0.18 V in the neutral medium corresponding to the quinone functional groups present on the electrode surface. AGCE was studied in (pH 7.4) 0.1 M PBS for the electro-catalysis of H2O2. The surface of the activated electrode was analysed by Raman spectroscopy and contact angle measurements. In addition, for the activated surface, the contact angle was found to be 85° which indicated the hydrophilic nature of the surface. The different optimization parameters such as (1) effect of electrolyte ions, (2) electrooxidation cycles, and (3) oxidation potential windows were studied to improve the activation process. Finally, AGCE was used to detect H2O2 from 0.1 to 10 mM and the limit of detection (LOD) was found to be 0.053 mM with a linear correlation coefficient (R2) of 0.9633. The selectivity of the sensor towards H2O2 was carried out in the presence of other interferents. The sensitivity of the AGCE sensor was calculated as 17.16 μA mol cm−2. Finally, the commercial application of the sensor was verified by testing it in milk samples with H2O2 in the recovery range of 95%–98%.","PeriodicalId":72870,"journal":{"name":"ECS sensors plus","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Electrochemical Detection of H2O2 Using an Activated Glassy Carbon Electrode\",\"authors\":\"P. Murugan, Ramila D. Nagarajan, A. Sundramoorthy, Dhanraj M. Ganapathy, R. Atchudan, D. Nallaswamy, A. Khosla\",\"doi\":\"10.1149/2754-2726/ac7c78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen peroxide (H2O2) is extensively used for sterilization purposes in the food industries and pharmaceuticals as an antimicrobial agent. According to the Food and Agriculture Organization (FAO), the permissible level of H2O2 in milk is in the range of 0.04 to 0.05% w/v, so it has been prohibited to use as a preservative agent. Herein, we reported the electrochemical sensing of H2O2 in milk samples using an activated glassy carbon electrode (AGCE). For this purpose, activation of GCE was carried out in 0.1 M H2SO4 by continuous potential sweeping between −0.7 to 1.8 V for 25 cycles. The AGCE showed a redox peak at -0.18 V in the neutral medium corresponding to the quinone functional groups present on the electrode surface. AGCE was studied in (pH 7.4) 0.1 M PBS for the electro-catalysis of H2O2. The surface of the activated electrode was analysed by Raman spectroscopy and contact angle measurements. In addition, for the activated surface, the contact angle was found to be 85° which indicated the hydrophilic nature of the surface. The different optimization parameters such as (1) effect of electrolyte ions, (2) electrooxidation cycles, and (3) oxidation potential windows were studied to improve the activation process. Finally, AGCE was used to detect H2O2 from 0.1 to 10 mM and the limit of detection (LOD) was found to be 0.053 mM with a linear correlation coefficient (R2) of 0.9633. The selectivity of the sensor towards H2O2 was carried out in the presence of other interferents. The sensitivity of the AGCE sensor was calculated as 17.16 μA mol cm−2. Finally, the commercial application of the sensor was verified by testing it in milk samples with H2O2 in the recovery range of 95%–98%.\",\"PeriodicalId\":72870,\"journal\":{\"name\":\"ECS sensors plus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS sensors plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2754-2726/ac7c78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS sensors plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2754-2726/ac7c78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

过氧化氢(H2O2)作为一种抗菌剂广泛用于食品工业和制药中的杀菌目的。根据粮食及农业组织(FAO)的数据,牛奶中H2O2的允许含量在0.04至0.05%w/v之间,因此禁止将其用作防腐剂。在此,我们报道了使用活性玻璃碳电极(AGCE)对牛奶样品中H2O2的电化学传感。为此,GCE的活化是在0.1 M H2SO4中,通过在−0.7至1.8 V之间连续电位扫描进行25次循环。AGCE在中性介质中显示出-0.18V的氧化还原峰,对应于电极表面上存在的醌官能团。研究了AGCE在(pH 7.4)0.1M PBS中对H2O2的电催化作用。通过拉曼光谱和接触角测量对活化电极的表面进行分析。此外,对于活化表面,发现接触角为85°,这表明表面的亲水性。研究了不同的优化参数,如(1)电解质离子的影响,(2)电氧化循环和(3)氧化电位窗口,以改善活化过程。最后,使用AGCE检测0.1至10mM的H2O2,发现检测限(LOD)为0.053mM,线性相关系数(R2)为0.9633。传感器对H2O2的选择性是在存在其他干扰物的情况下进行的。AGCE传感器的灵敏度计算为17.16μA mol cm−2。最后,通过在含有H2O2的牛奶样品中进行测试,验证了该传感器的商业应用,回收率范围为95%-98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemical Detection of H2O2 Using an Activated Glassy Carbon Electrode
Hydrogen peroxide (H2O2) is extensively used for sterilization purposes in the food industries and pharmaceuticals as an antimicrobial agent. According to the Food and Agriculture Organization (FAO), the permissible level of H2O2 in milk is in the range of 0.04 to 0.05% w/v, so it has been prohibited to use as a preservative agent. Herein, we reported the electrochemical sensing of H2O2 in milk samples using an activated glassy carbon electrode (AGCE). For this purpose, activation of GCE was carried out in 0.1 M H2SO4 by continuous potential sweeping between −0.7 to 1.8 V for 25 cycles. The AGCE showed a redox peak at -0.18 V in the neutral medium corresponding to the quinone functional groups present on the electrode surface. AGCE was studied in (pH 7.4) 0.1 M PBS for the electro-catalysis of H2O2. The surface of the activated electrode was analysed by Raman spectroscopy and contact angle measurements. In addition, for the activated surface, the contact angle was found to be 85° which indicated the hydrophilic nature of the surface. The different optimization parameters such as (1) effect of electrolyte ions, (2) electrooxidation cycles, and (3) oxidation potential windows were studied to improve the activation process. Finally, AGCE was used to detect H2O2 from 0.1 to 10 mM and the limit of detection (LOD) was found to be 0.053 mM with a linear correlation coefficient (R2) of 0.9633. The selectivity of the sensor towards H2O2 was carried out in the presence of other interferents. The sensitivity of the AGCE sensor was calculated as 17.16 μA mol cm−2. Finally, the commercial application of the sensor was verified by testing it in milk samples with H2O2 in the recovery range of 95%–98%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review—Energy and Power Requirements for Wearable Sensors 3D Printed Carbon Nanotubes Reinforced Polydimethylsiloxane Flexible Sensors for Tactile Sensing Editors’ Choice—Review—Advances in Electrochemical Sensors: Improving Food Safety, Quality, and Traceability Field Testing of a Mixed Potential IoT Sensor Platform for Methane Quantification Automated Quantification of DNA Damage Using Deep Learning and Use of Synthetic Data Generated from Basic Geometric Shapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1