{"title":"小鼠次生卵泡在特定合成基质中的体外三维培养","authors":"Md. Asaduzzman, X. Cui, Hu Zhang, F. Young","doi":"10.4236/JBNB.2018.93014","DOIUrl":null,"url":null,"abstract":"Ovarian follicle growth in three dimensional (3D) matrices in vitro has limitations: a) matrices don’t expand as follicles grow, b) requirements for enzyme-mediated retrieval, and c) animal-derived components prevent clinical application. Therefore, we evaluated N-Isopropylacrylamide (SFX-1), a novel synthetic 3D culture matrix, for follicle culture. Groups of three murine secondary follicles were encapsulated in 50 μL of DMEM/F12-1%ITS-10%FCS (DMEM/F12) or SFX-1 (3:2 v/v DMEM/F12) or Matrigel (1:1 DMEM/F12) and cultured for 48 h. Matrigel contains growth factors but SFX-1 has no animal-derived factors. Each culture condition was examined in 6 wells containing 18 follicles, in four replicate experiments (n = 4). Photomicrographs were used to determine follicle diameters and morphological integrity. Follicles were Live-Dead (LD) stained or disaggregated to generate cells for viability assessment using Trypan Blue (TB). Estradiol, progesterone and anti-mullerian hormone (AMH) in conditioned media were measured using Enzyme-linked Immunoassay. All culture conditions supported similar increases in follicle diameter. DMEM/F12 did not maintain morphological integrity which prevented follicle retrieval after 48 h; 25% were retrieved from DMEM/F12, but 44% and 41% follicles were retrieved from SFX-1 and Matrigel respectively. Follicles retrieved from Matrigel could not be disaggregated, which prevented TB viability assessment. LD estimations of viable cells/follicle were lower than TB, but culture conditions had no effect on viability; SFX-1 64% ± 8% and DMEM/F12 69% ± 9%. SFX-1 and Matrigel supported similar levels of progesterone synthesis, only Matrigel supported estrogen synthesis, but none of the culture conditions supported AMH production. SFX-1 was not cytotoxic and was comparable to Matrigel. Further development of SFX-1 for use with human follicles is supported.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"09 1","pages":"244-262"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Three Dimensional In Vitro Culture of Murine Secondary Follicles in a Defined Synthetic Matrix\",\"authors\":\"Md. Asaduzzman, X. Cui, Hu Zhang, F. Young\",\"doi\":\"10.4236/JBNB.2018.93014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ovarian follicle growth in three dimensional (3D) matrices in vitro has limitations: a) matrices don’t expand as follicles grow, b) requirements for enzyme-mediated retrieval, and c) animal-derived components prevent clinical application. Therefore, we evaluated N-Isopropylacrylamide (SFX-1), a novel synthetic 3D culture matrix, for follicle culture. Groups of three murine secondary follicles were encapsulated in 50 μL of DMEM/F12-1%ITS-10%FCS (DMEM/F12) or SFX-1 (3:2 v/v DMEM/F12) or Matrigel (1:1 DMEM/F12) and cultured for 48 h. Matrigel contains growth factors but SFX-1 has no animal-derived factors. Each culture condition was examined in 6 wells containing 18 follicles, in four replicate experiments (n = 4). Photomicrographs were used to determine follicle diameters and morphological integrity. Follicles were Live-Dead (LD) stained or disaggregated to generate cells for viability assessment using Trypan Blue (TB). Estradiol, progesterone and anti-mullerian hormone (AMH) in conditioned media were measured using Enzyme-linked Immunoassay. All culture conditions supported similar increases in follicle diameter. DMEM/F12 did not maintain morphological integrity which prevented follicle retrieval after 48 h; 25% were retrieved from DMEM/F12, but 44% and 41% follicles were retrieved from SFX-1 and Matrigel respectively. Follicles retrieved from Matrigel could not be disaggregated, which prevented TB viability assessment. LD estimations of viable cells/follicle were lower than TB, but culture conditions had no effect on viability; SFX-1 64% ± 8% and DMEM/F12 69% ± 9%. SFX-1 and Matrigel supported similar levels of progesterone synthesis, only Matrigel supported estrogen synthesis, but none of the culture conditions supported AMH production. SFX-1 was not cytotoxic and was comparable to Matrigel. Further development of SFX-1 for use with human follicles is supported.\",\"PeriodicalId\":68623,\"journal\":{\"name\":\"生物材料与纳米技术(英文)\",\"volume\":\"09 1\",\"pages\":\"244-262\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物材料与纳米技术(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/JBNB.2018.93014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物材料与纳米技术(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JBNB.2018.93014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three Dimensional In Vitro Culture of Murine Secondary Follicles in a Defined Synthetic Matrix
Ovarian follicle growth in three dimensional (3D) matrices in vitro has limitations: a) matrices don’t expand as follicles grow, b) requirements for enzyme-mediated retrieval, and c) animal-derived components prevent clinical application. Therefore, we evaluated N-Isopropylacrylamide (SFX-1), a novel synthetic 3D culture matrix, for follicle culture. Groups of three murine secondary follicles were encapsulated in 50 μL of DMEM/F12-1%ITS-10%FCS (DMEM/F12) or SFX-1 (3:2 v/v DMEM/F12) or Matrigel (1:1 DMEM/F12) and cultured for 48 h. Matrigel contains growth factors but SFX-1 has no animal-derived factors. Each culture condition was examined in 6 wells containing 18 follicles, in four replicate experiments (n = 4). Photomicrographs were used to determine follicle diameters and morphological integrity. Follicles were Live-Dead (LD) stained or disaggregated to generate cells for viability assessment using Trypan Blue (TB). Estradiol, progesterone and anti-mullerian hormone (AMH) in conditioned media were measured using Enzyme-linked Immunoassay. All culture conditions supported similar increases in follicle diameter. DMEM/F12 did not maintain morphological integrity which prevented follicle retrieval after 48 h; 25% were retrieved from DMEM/F12, but 44% and 41% follicles were retrieved from SFX-1 and Matrigel respectively. Follicles retrieved from Matrigel could not be disaggregated, which prevented TB viability assessment. LD estimations of viable cells/follicle were lower than TB, but culture conditions had no effect on viability; SFX-1 64% ± 8% and DMEM/F12 69% ± 9%. SFX-1 and Matrigel supported similar levels of progesterone synthesis, only Matrigel supported estrogen synthesis, but none of the culture conditions supported AMH production. SFX-1 was not cytotoxic and was comparable to Matrigel. Further development of SFX-1 for use with human follicles is supported.