Guoming Zhang , Li Li , Wenjian Tang , Lianyou Liu , Peijun Shi , Xujiao Han , Jiadong Dai
{"title":"无跃变和有跃变的硬壳playa表面风蚀:通过实验室风洞实验的比较","authors":"Guoming Zhang , Li Li , Wenjian Tang , Lianyou Liu , Peijun Shi , Xujiao Han , Jiadong Dai","doi":"10.1016/j.iswcr.2022.10.007","DOIUrl":null,"url":null,"abstract":"<div><p>Playas are common in many arid regions and recognized as a major source of hypersaline particles. A better understanding of wind erosion on crusted playas has significant implications for land management and pollution control practices. We hypothesized that wind erosion rates of crusted playas were complicated and controlled by the interactions between playa crust and wind-induced saltation conditions. However, comparisons regarding the effects of different playa crusts on wind erosion under no saltation (NS) and with saltation (WS) conditions were lacking. In this study, laboratory wind tunnel experiments were carried out to simulate both NS and WS conditions, to investigate the erosion rates of different crust types (Salt, Takyr, and Puffic crust) at different wind speeds. Results showed that: 1) Salt crust had greater crust strengths than did Takyr crust and Puffic crust; 2) wind erosion rates under the WS condition were up to 60 times greater than those under the NS condition, suggesting that sand bombardment was the dominant mechanism responsible for removal of fine material from crusted playa surfaces; 3) both sand bombardment rate and wind erosion rate of the playa crusts increased with increasing wind speed under the WS conditions; 4) Puffic crust exhibited a greater rate of wind erosion compared to both the Takyr and Salt crusts under the NS condition, yet tended to have a lower rate of wind erosion compared to both the Takyr and Salt crusts under the WS condition. This difference can be attributed to the fact that soft Puffic crusts are pliable and can dissipate the force of impacting grains under the WS conditions. Our results indicated that wind erosion processes on crusted playas are complicated and are affected by wind-induced saltation and crust type, specifically crust strength and elasticity of the surface.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"11 3","pages":"Pages 518-527"},"PeriodicalIF":7.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wind erosion from crusted playa surfaces by no saltation and with saltation: A comparison through laboratory wind tunnel experiments\",\"authors\":\"Guoming Zhang , Li Li , Wenjian Tang , Lianyou Liu , Peijun Shi , Xujiao Han , Jiadong Dai\",\"doi\":\"10.1016/j.iswcr.2022.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Playas are common in many arid regions and recognized as a major source of hypersaline particles. A better understanding of wind erosion on crusted playas has significant implications for land management and pollution control practices. We hypothesized that wind erosion rates of crusted playas were complicated and controlled by the interactions between playa crust and wind-induced saltation conditions. However, comparisons regarding the effects of different playa crusts on wind erosion under no saltation (NS) and with saltation (WS) conditions were lacking. In this study, laboratory wind tunnel experiments were carried out to simulate both NS and WS conditions, to investigate the erosion rates of different crust types (Salt, Takyr, and Puffic crust) at different wind speeds. Results showed that: 1) Salt crust had greater crust strengths than did Takyr crust and Puffic crust; 2) wind erosion rates under the WS condition were up to 60 times greater than those under the NS condition, suggesting that sand bombardment was the dominant mechanism responsible for removal of fine material from crusted playa surfaces; 3) both sand bombardment rate and wind erosion rate of the playa crusts increased with increasing wind speed under the WS conditions; 4) Puffic crust exhibited a greater rate of wind erosion compared to both the Takyr and Salt crusts under the NS condition, yet tended to have a lower rate of wind erosion compared to both the Takyr and Salt crusts under the WS condition. This difference can be attributed to the fact that soft Puffic crusts are pliable and can dissipate the force of impacting grains under the WS conditions. Our results indicated that wind erosion processes on crusted playas are complicated and are affected by wind-induced saltation and crust type, specifically crust strength and elasticity of the surface.</p></div>\",\"PeriodicalId\":48622,\"journal\":{\"name\":\"International Soil and Water Conservation Research\",\"volume\":\"11 3\",\"pages\":\"Pages 518-527\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Soil and Water Conservation Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095633922000855\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633922000855","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Wind erosion from crusted playa surfaces by no saltation and with saltation: A comparison through laboratory wind tunnel experiments
Playas are common in many arid regions and recognized as a major source of hypersaline particles. A better understanding of wind erosion on crusted playas has significant implications for land management and pollution control practices. We hypothesized that wind erosion rates of crusted playas were complicated and controlled by the interactions between playa crust and wind-induced saltation conditions. However, comparisons regarding the effects of different playa crusts on wind erosion under no saltation (NS) and with saltation (WS) conditions were lacking. In this study, laboratory wind tunnel experiments were carried out to simulate both NS and WS conditions, to investigate the erosion rates of different crust types (Salt, Takyr, and Puffic crust) at different wind speeds. Results showed that: 1) Salt crust had greater crust strengths than did Takyr crust and Puffic crust; 2) wind erosion rates under the WS condition were up to 60 times greater than those under the NS condition, suggesting that sand bombardment was the dominant mechanism responsible for removal of fine material from crusted playa surfaces; 3) both sand bombardment rate and wind erosion rate of the playa crusts increased with increasing wind speed under the WS conditions; 4) Puffic crust exhibited a greater rate of wind erosion compared to both the Takyr and Salt crusts under the NS condition, yet tended to have a lower rate of wind erosion compared to both the Takyr and Salt crusts under the WS condition. This difference can be attributed to the fact that soft Puffic crusts are pliable and can dissipate the force of impacting grains under the WS conditions. Our results indicated that wind erosion processes on crusted playas are complicated and are affected by wind-induced saltation and crust type, specifically crust strength and elasticity of the surface.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research