一种新的改进粒子滤波器及其在目标跟踪中的应用

R. Havangi
{"title":"一种新的改进粒子滤波器及其在目标跟踪中的应用","authors":"R. Havangi","doi":"10.22068/IJEEE.16.4.449","DOIUrl":null,"url":null,"abstract":"The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome these problems. The proposed method uses an adaptive unscented Kalman filter (AUKF) filter to generate the proposal distribution, in which the covariance of the measurement and process of the state are online adjusted by predicted residual as an adaptive factor based on a covariance matching technique. In addition, it uses the genetic operators based strategy to further improve the particle diversity. The results show the effectiveness of the proposed approach.","PeriodicalId":39055,"journal":{"name":"Iranian Journal of Electrical and Electronic Engineering","volume":"16 1","pages":"449-460"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Modified Particle Filter With Application in Target Tracking\",\"authors\":\"R. Havangi\",\"doi\":\"10.22068/IJEEE.16.4.449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome these problems. The proposed method uses an adaptive unscented Kalman filter (AUKF) filter to generate the proposal distribution, in which the covariance of the measurement and process of the state are online adjusted by predicted residual as an adaptive factor based on a covariance matching technique. In addition, it uses the genetic operators based strategy to further improve the particle diversity. The results show the effectiveness of the proposed approach.\",\"PeriodicalId\":39055,\"journal\":{\"name\":\"Iranian Journal of Electrical and Electronic Engineering\",\"volume\":\"16 1\",\"pages\":\"449-460\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Electrical and Electronic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22068/IJEEE.16.4.449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Electrical and Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJEEE.16.4.449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

粒子滤波(PF)是一种对非线性/非高斯系统具有较好估计效果的新技术。然而,PF是不一致的,这主要是由于重采样步骤中粒子多样性的损失和未知的先验噪声统计知识造成的。本文提出了一种新的改进粒子滤波器,称为自适应无气味粒子滤波器(AUPF),以克服这些问题。该方法采用自适应无气味卡尔曼滤波(AUKF)来生成建议分布,并基于协方差匹配技术,以预测残差作为自适应因子在线调整测量和状态过程的协方差。此外,采用基于遗传算子的策略进一步提高了粒子多样性。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Modified Particle Filter With Application in Target Tracking
The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome these problems. The proposed method uses an adaptive unscented Kalman filter (AUKF) filter to generate the proposal distribution, in which the covariance of the measurement and process of the state are online adjusted by predicted residual as an adaptive factor based on a covariance matching technique. In addition, it uses the genetic operators based strategy to further improve the particle diversity. The results show the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Electrical and Electronic Engineering
Iranian Journal of Electrical and Electronic Engineering Engineering-Electrical and Electronic Engineering
CiteScore
1.70
自引率
0.00%
发文量
13
审稿时长
12 weeks
期刊最新文献
Robust Operation Planning With Participation of Flexibility Resources Both on Generation and Demand Sides Under Uncertainty of Wind-based Generation Units A Novel Droop-based Control Strategy for Improving the Performance of VSC-MTDC Systems in Post-Contingency Conditions Securing Reliability Constrained Technology Combination for Isolated Micro-Grid Using Multi-Agent Based Optimization View-Invariant and Robust Gait Recognition Using Gait Energy Images of Leg Region and Masking Altered Sections Multiple Electricity Markets Competitiveness Undergoing Symmetric and Asymmetric Renewables Development Policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1