利用动态主题建模发现癌症研究中人工智能的演变

IF 1.6 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE COLLNET Journal of Scientometrics and Information Management Pub Date : 2021-07-03 DOI:10.1080/09737766.2021.1958659
Shahab Mosallaie, M. Rad, Andrea Schiffauerova, Ashkan Ebadi
{"title":"利用动态主题建模发现癌症研究中人工智能的演变","authors":"Shahab Mosallaie, M. Rad, Andrea Schiffauerova, Ashkan Ebadi","doi":"10.1080/09737766.2021.1958659","DOIUrl":null,"url":null,"abstract":"The rapid growth of healthcare data in recent years calls for more advanced and efficient analytic techniques. Artificial intelligence facilitates finding insightful patterns in massive high-dimensional data. Considering the latest movements towards using machine learning and deep learning techniques in the medical domain, in this study, we focused on the publications in which researchers employed artificial intelligence techniques for cancer diagnosis and treatment. Using dynamic topic modeling and natural language processing techniques, we analyzed the contents and trends of more than 12,000 scientific publications within the period of 2000 to 2018, extracted from two different sources, i.e., Elsevier’s Scopus and PubMed. While drawing the landscape of cancer research, our results also shed light on the evolution of artificial intelligence techniques and algorithms used for cancer diagnosis and treatment. Our findings confirm that modern computer science algorithms are being widely applied to extract patterns from large-scale medical images to cure different types of cancer with a special focus on deep learning techniques in recent years.","PeriodicalId":10501,"journal":{"name":"COLLNET Journal of Scientometrics and Information Management","volume":"15 1","pages":"225 - 240"},"PeriodicalIF":1.6000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Discovering the evolution of artificial intelligence in cancer research using dynamic topic modeling\",\"authors\":\"Shahab Mosallaie, M. Rad, Andrea Schiffauerova, Ashkan Ebadi\",\"doi\":\"10.1080/09737766.2021.1958659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth of healthcare data in recent years calls for more advanced and efficient analytic techniques. Artificial intelligence facilitates finding insightful patterns in massive high-dimensional data. Considering the latest movements towards using machine learning and deep learning techniques in the medical domain, in this study, we focused on the publications in which researchers employed artificial intelligence techniques for cancer diagnosis and treatment. Using dynamic topic modeling and natural language processing techniques, we analyzed the contents and trends of more than 12,000 scientific publications within the period of 2000 to 2018, extracted from two different sources, i.e., Elsevier’s Scopus and PubMed. While drawing the landscape of cancer research, our results also shed light on the evolution of artificial intelligence techniques and algorithms used for cancer diagnosis and treatment. Our findings confirm that modern computer science algorithms are being widely applied to extract patterns from large-scale medical images to cure different types of cancer with a special focus on deep learning techniques in recent years.\",\"PeriodicalId\":10501,\"journal\":{\"name\":\"COLLNET Journal of Scientometrics and Information Management\",\"volume\":\"15 1\",\"pages\":\"225 - 240\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"COLLNET Journal of Scientometrics and Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09737766.2021.1958659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"COLLNET Journal of Scientometrics and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09737766.2021.1958659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 5

摘要

近年来,医疗保健数据的快速增长需要更先进、更高效的分析技术。人工智能有助于在海量高维数据中找到有洞察力的模式。考虑到医学领域使用机器学习和深度学习技术的最新动向,在这项研究中,我们重点关注研究人员将人工智能技术用于癌症诊断和治疗的出版物。利用动态主题建模和自然语言处理技术,我们分析了2000年至2018年期间从爱思唯尔Scopus和PubMed两个不同来源提取的12000多篇科学出版物的内容和趋势。在描绘癌症研究前景的同时,我们的研究结果也揭示了用于癌症诊断和治疗的人工智能技术和算法的演变。我们的研究结果证实,近年来,现代计算机科学算法正被广泛应用于从大规模医学图像中提取模式,以治愈不同类型的癌症,其中特别关注深度学习技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering the evolution of artificial intelligence in cancer research using dynamic topic modeling
The rapid growth of healthcare data in recent years calls for more advanced and efficient analytic techniques. Artificial intelligence facilitates finding insightful patterns in massive high-dimensional data. Considering the latest movements towards using machine learning and deep learning techniques in the medical domain, in this study, we focused on the publications in which researchers employed artificial intelligence techniques for cancer diagnosis and treatment. Using dynamic topic modeling and natural language processing techniques, we analyzed the contents and trends of more than 12,000 scientific publications within the period of 2000 to 2018, extracted from two different sources, i.e., Elsevier’s Scopus and PubMed. While drawing the landscape of cancer research, our results also shed light on the evolution of artificial intelligence techniques and algorithms used for cancer diagnosis and treatment. Our findings confirm that modern computer science algorithms are being widely applied to extract patterns from large-scale medical images to cure different types of cancer with a special focus on deep learning techniques in recent years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
COLLNET Journal of Scientometrics and Information Management
COLLNET Journal of Scientometrics and Information Management INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
0.00%
发文量
11
期刊最新文献
Mapping of top papers in the subject category of Soil Science Mapping global research on expert systems Research trends in the field of natural language processing : A scientometric study based on global publications during 2001-2020 Classic articles in cervical cancer research : A bibliometric analysis Human and algorithmic decision-making in the personnel selection process: A comparative bibliometric on bias
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1