基于离子液体的生物质转化过程的最新进展

Q4 Chemical Engineering ASEAN Journal of Chemical Engineering Pub Date : 2021-12-30 DOI:10.22146/ajche.69552
M. Zunita, Risha Diah Rhamadhani
{"title":"基于离子液体的生物质转化过程的最新进展","authors":"M. Zunita, Risha Diah Rhamadhani","doi":"10.22146/ajche.69552","DOIUrl":null,"url":null,"abstract":"The amount of biomass products generated globally increases year after year. Nature produces lignocellulose, which is largely constituted of three components in the following order: cellulose (34–50%), hemicellulose (15–35%), and lignin (5–30%). A promising conversion method known as biomass conversion employs a liquid media-based process to address the issue of an abundance of biomass as waste. Converting biomass with ionic liquid (IL) can address not only environmental issues caused by the abundance of biomass waste but also generate new energy sources or new products with economical selling value. IL can be employed as a green catalyst, solvent, or electrolyte, as well as in a number of conversion processes. In general, 1-alkyl-3-methyl-imidazolium-based cations are the most commonly used IL types for biomass conversion. The conversion conditions are relatively mild, consisting of a low temperature of around 95-220 °C, 1 atm, for 10–240 minutes. This paper review is expected to be a significant reference in the future for the development of other biomass conversion processes.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Recent Development of Biomass Conversion using Ionic Liquid-based Processes\",\"authors\":\"M. Zunita, Risha Diah Rhamadhani\",\"doi\":\"10.22146/ajche.69552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The amount of biomass products generated globally increases year after year. Nature produces lignocellulose, which is largely constituted of three components in the following order: cellulose (34–50%), hemicellulose (15–35%), and lignin (5–30%). A promising conversion method known as biomass conversion employs a liquid media-based process to address the issue of an abundance of biomass as waste. Converting biomass with ionic liquid (IL) can address not only environmental issues caused by the abundance of biomass waste but also generate new energy sources or new products with economical selling value. IL can be employed as a green catalyst, solvent, or electrolyte, as well as in a number of conversion processes. In general, 1-alkyl-3-methyl-imidazolium-based cations are the most commonly used IL types for biomass conversion. The conversion conditions are relatively mild, consisting of a low temperature of around 95-220 °C, 1 atm, for 10–240 minutes. This paper review is expected to be a significant reference in the future for the development of other biomass conversion processes.\",\"PeriodicalId\":8490,\"journal\":{\"name\":\"ASEAN Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASEAN Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ajche.69552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ajche.69552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 10

摘要

全球产生的生物质产品数量逐年增加。大自然产生木质纤维素,它主要由以下三种成分组成:纤维素(34-50%),半纤维素(15-35%)和木质素(5-30%)。一种被称为生物质转化的有前途的转化方法采用基于液体介质的过程来解决大量生物质作为废物的问题。利用离子液体对生物质进行转化,不仅可以解决生物质废弃物丰富带来的环境问题,而且可以产生具有经济销售价值的新能源或新产品。IL可以用作绿色催化剂、溶剂或电解质,也可以用于许多转化过程。一般来说,1-烷基-3-甲基-咪唑基阳离子是生物质转化中最常用的IL类型。转化条件相对温和,包括95-220°C左右的低温,1 atm, 10-240分钟。本文综述有望为今后其他生物质转化工艺的开发提供重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent Development of Biomass Conversion using Ionic Liquid-based Processes
The amount of biomass products generated globally increases year after year. Nature produces lignocellulose, which is largely constituted of three components in the following order: cellulose (34–50%), hemicellulose (15–35%), and lignin (5–30%). A promising conversion method known as biomass conversion employs a liquid media-based process to address the issue of an abundance of biomass as waste. Converting biomass with ionic liquid (IL) can address not only environmental issues caused by the abundance of biomass waste but also generate new energy sources or new products with economical selling value. IL can be employed as a green catalyst, solvent, or electrolyte, as well as in a number of conversion processes. In general, 1-alkyl-3-methyl-imidazolium-based cations are the most commonly used IL types for biomass conversion. The conversion conditions are relatively mild, consisting of a low temperature of around 95-220 °C, 1 atm, for 10–240 minutes. This paper review is expected to be a significant reference in the future for the development of other biomass conversion processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ASEAN Journal of Chemical Engineering
ASEAN Journal of Chemical Engineering Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
15
期刊最新文献
Optimization of Defective Coffee Beans Decaffeination Using Palm Oil The Deep Eutectic Solvent in Used Batteries as an Electrolyte Additive for Potential Chitosan Solid Electrolyte Membrane Chemical Properties and Breakthrough Adsorption Study of Activated Carbon Derived from Carbon Precursor from Carbide Industry Extraction of Java Lemongrass (Cymbopogon citratus) Using Microwave-Assisted Hydro Distillation in Pilot Scale: Parametric Study and Modelling Catalytic Decarboxylation of Palm Oil to Green Diesel over Pellets of Ni-CaO/Activated Carbon (AC) Catalyst Under Subcritical Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1