H. Chen, Zhuangzhi Zhao, Peirong Qi, Gang Wang, Lei Shi, Feng Yu
{"title":"硫掺杂香蕉皮活性炭作为超级电容器电极材料","authors":"H. Chen, Zhuangzhi Zhao, Peirong Qi, Gang Wang, Lei Shi, Feng Yu","doi":"10.1504/IJNM.2019.10018335","DOIUrl":null,"url":null,"abstract":"Agricultural waste banana peel (BP) as a sustainable biomass resource is used to produce porous carbon (PC) and activated carbon (AC) materials. Sulphur-doped banana peel-derived AC (S-BP-AC) was successfully prepared for supercapacitors. The results show that the S-BP-AC presents a high Brunauer-Emmett-Teller surface area of 2,224.9 m2/g, a large pore volume of 0.77 cm3/g, and a suitable pore-size distribution of approximately 0.8 nm. It is easy to bring S-BP-AC into contact with an electrolyte. The S-BP-AC electrode had great specific capacitance of 162.5 F/g at a current density of 0.5 A/g in a 6 M KOH aqueous electrolyte. The results indicate that the S-BP-AC can be applied to use in high performance supercapacitors.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Sulphur-doped banana peel-derived activated carbon as electrode materials for supercapacitors\",\"authors\":\"H. Chen, Zhuangzhi Zhao, Peirong Qi, Gang Wang, Lei Shi, Feng Yu\",\"doi\":\"10.1504/IJNM.2019.10018335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agricultural waste banana peel (BP) as a sustainable biomass resource is used to produce porous carbon (PC) and activated carbon (AC) materials. Sulphur-doped banana peel-derived AC (S-BP-AC) was successfully prepared for supercapacitors. The results show that the S-BP-AC presents a high Brunauer-Emmett-Teller surface area of 2,224.9 m2/g, a large pore volume of 0.77 cm3/g, and a suitable pore-size distribution of approximately 0.8 nm. It is easy to bring S-BP-AC into contact with an electrolyte. The S-BP-AC electrode had great specific capacitance of 162.5 F/g at a current density of 0.5 A/g in a 6 M KOH aqueous electrolyte. The results indicate that the S-BP-AC can be applied to use in high performance supercapacitors.\",\"PeriodicalId\":14170,\"journal\":{\"name\":\"International Journal of Nanomanufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNM.2019.10018335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2019.10018335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7
摘要
农业废弃香蕉皮(BP)作为一种可持续的生物质资源,用于生产多孔炭(PC)和活性炭(AC)材料。成功制备了含硫香蕉皮衍生AC (S-BP-AC)超级电容器。结果表明,S-BP-AC具有22224.9 m2/g的高brunauer - emmet - teller表面积,0.77 cm3/g的大孔体积,孔径分布约为0.8 nm。很容易使S-BP-AC与电解质接触。在6 M KOH水溶液中,当电流密度为0.5 a /g时,S-BP-AC电极的比电容达到162.5 F/g。结果表明,S-BP-AC可用于高性能超级电容器。
Sulphur-doped banana peel-derived activated carbon as electrode materials for supercapacitors
Agricultural waste banana peel (BP) as a sustainable biomass resource is used to produce porous carbon (PC) and activated carbon (AC) materials. Sulphur-doped banana peel-derived AC (S-BP-AC) was successfully prepared for supercapacitors. The results show that the S-BP-AC presents a high Brunauer-Emmett-Teller surface area of 2,224.9 m2/g, a large pore volume of 0.77 cm3/g, and a suitable pore-size distribution of approximately 0.8 nm. It is easy to bring S-BP-AC into contact with an electrolyte. The S-BP-AC electrode had great specific capacitance of 162.5 F/g at a current density of 0.5 A/g in a 6 M KOH aqueous electrolyte. The results indicate that the S-BP-AC can be applied to use in high performance supercapacitors.