{"title":"用于能源、传感和环境应用的农产品衍生碳:小型综述","authors":"Syed Shaheen Shah, A. Aziz","doi":"10.3329/bjpt.v27i2.50686","DOIUrl":null,"url":null,"abstract":"Carbon is one of the versatile materials used in modern life for human welfare. It has a wide range of applications such as drug delivery, coatings, energy generation and storage, gas separation, water purification, sensor fabrication, and catalysis. Most of the widely used carbon materials are graphene and carbon nanotubes. Nonrenewable precursors (e.g., natural gas), toxic chemicals, and complex synthesis methods are often required for their preparation, limiting their wide practical applications. Besides these, biomass-derived carbons are attractive materials as they can be prepared simply from renewable biomass. However, their practical applications' success partially depends on their properties like size, shape, porosity, and presence of heteroatoms, which can be controlled by selecting the proper type of biomass, activating agent, and preparation method. It is noted that different species of plants have different chemical compositions and textures. This mini-review summarizes our group's recent sophisticated developments in agricultural-bio-waste-derived carbonaceous materials, including nanomaterials for electrocatalytic water splitting, electrochemical sensors, supercapacitors, water splitting, water treatment, gas separation, and enhance oil recovery. This offers valuable insights and essential guidelines towards the future design of agro-waste derived carbonaceous materials in various applications.","PeriodicalId":55590,"journal":{"name":"Bangladesh Journal of Plant Taxonomy","volume":"27 1","pages":"467-478"},"PeriodicalIF":0.6000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/bjpt.v27i2.50686","citationCount":"8","resultStr":"{\"title\":\"Agricultural product-derived carbon for energy, sensing, and environmental applications: A mini-review\",\"authors\":\"Syed Shaheen Shah, A. Aziz\",\"doi\":\"10.3329/bjpt.v27i2.50686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon is one of the versatile materials used in modern life for human welfare. It has a wide range of applications such as drug delivery, coatings, energy generation and storage, gas separation, water purification, sensor fabrication, and catalysis. Most of the widely used carbon materials are graphene and carbon nanotubes. Nonrenewable precursors (e.g., natural gas), toxic chemicals, and complex synthesis methods are often required for their preparation, limiting their wide practical applications. Besides these, biomass-derived carbons are attractive materials as they can be prepared simply from renewable biomass. However, their practical applications' success partially depends on their properties like size, shape, porosity, and presence of heteroatoms, which can be controlled by selecting the proper type of biomass, activating agent, and preparation method. It is noted that different species of plants have different chemical compositions and textures. This mini-review summarizes our group's recent sophisticated developments in agricultural-bio-waste-derived carbonaceous materials, including nanomaterials for electrocatalytic water splitting, electrochemical sensors, supercapacitors, water splitting, water treatment, gas separation, and enhance oil recovery. This offers valuable insights and essential guidelines towards the future design of agro-waste derived carbonaceous materials in various applications.\",\"PeriodicalId\":55590,\"journal\":{\"name\":\"Bangladesh Journal of Plant Taxonomy\",\"volume\":\"27 1\",\"pages\":\"467-478\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3329/bjpt.v27i2.50686\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bangladesh Journal of Plant Taxonomy\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3329/bjpt.v27i2.50686\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bangladesh Journal of Plant Taxonomy","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3329/bjpt.v27i2.50686","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Agricultural product-derived carbon for energy, sensing, and environmental applications: A mini-review
Carbon is one of the versatile materials used in modern life for human welfare. It has a wide range of applications such as drug delivery, coatings, energy generation and storage, gas separation, water purification, sensor fabrication, and catalysis. Most of the widely used carbon materials are graphene and carbon nanotubes. Nonrenewable precursors (e.g., natural gas), toxic chemicals, and complex synthesis methods are often required for their preparation, limiting their wide practical applications. Besides these, biomass-derived carbons are attractive materials as they can be prepared simply from renewable biomass. However, their practical applications' success partially depends on their properties like size, shape, porosity, and presence of heteroatoms, which can be controlled by selecting the proper type of biomass, activating agent, and preparation method. It is noted that different species of plants have different chemical compositions and textures. This mini-review summarizes our group's recent sophisticated developments in agricultural-bio-waste-derived carbonaceous materials, including nanomaterials for electrocatalytic water splitting, electrochemical sensors, supercapacitors, water splitting, water treatment, gas separation, and enhance oil recovery. This offers valuable insights and essential guidelines towards the future design of agro-waste derived carbonaceous materials in various applications.
期刊介绍:
Bangladesh is a humid, subtropical country favouring luxuriant growth of microorganisms, fungi and plants from algae to angiosperms with rich diversity. She has the largest mangrove forest of the world in addition to diverse hilly and wetland habitats. More than a century back, foreign explorers endeavoured several floral expeditions, but little was done for non-vasculars and pteridophytes. In recent times, Bangladesh National Herbarium has been carrying out taxonomic research in Bangladesh along with few other national institutes (e.g. Department of Botany of public universities and Bangladesh Forest Research Institute).