纳米结构生物催化的技术现状及其应用

IF 1.5 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology & Biotechnological Equipment Pub Date : 2022-12-31 DOI:10.1080/13102818.2022.2054727
Fengfan Liu, Zhihao Shi, Weike Su, Jiequn Wu
{"title":"纳米结构生物催化的技术现状及其应用","authors":"Fengfan Liu, Zhihao Shi, Weike Su, Jiequn Wu","doi":"10.1080/13102818.2022.2054727","DOIUrl":null,"url":null,"abstract":"Abstract Enzymes have been widely studied for their excellent efficiency, selectivity and environmentally benign nature. However, the development of their biocatalytic applications is severely limited by the lack of stability and reusability. Nanostructured materials have been demonstrated as efficient hosts for the immobilization of enzyme due to their large surface areas as well as higher activities and long-term stability. Furthermore, nanomaterials with enzyme-like characteristics are explored as highly stable and low-cost alternatives to mimic the structures and functions of naturally occurring enzymes. This review offers an overview on the research status of enzymatic immobilization adapted from nanostructured materials and nanozymes in numerous fields, from biosensing and biocatalysis to environmental remediation, with emphasis focused on current challenges and future directions in highly selective and efficient biocatalysis.","PeriodicalId":9076,"journal":{"name":"Biotechnology & Biotechnological Equipment","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"State of the art and applications in nanostructured biocatalysis\",\"authors\":\"Fengfan Liu, Zhihao Shi, Weike Su, Jiequn Wu\",\"doi\":\"10.1080/13102818.2022.2054727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Enzymes have been widely studied for their excellent efficiency, selectivity and environmentally benign nature. However, the development of their biocatalytic applications is severely limited by the lack of stability and reusability. Nanostructured materials have been demonstrated as efficient hosts for the immobilization of enzyme due to their large surface areas as well as higher activities and long-term stability. Furthermore, nanomaterials with enzyme-like characteristics are explored as highly stable and low-cost alternatives to mimic the structures and functions of naturally occurring enzymes. This review offers an overview on the research status of enzymatic immobilization adapted from nanostructured materials and nanozymes in numerous fields, from biosensing and biocatalysis to environmental remediation, with emphasis focused on current challenges and future directions in highly selective and efficient biocatalysis.\",\"PeriodicalId\":9076,\"journal\":{\"name\":\"Biotechnology & Biotechnological Equipment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology & Biotechnological Equipment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/13102818.2022.2054727\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology & Biotechnological Equipment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13102818.2022.2054727","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

酶因其优异的效率、选择性和环境友好性而受到广泛的研究。然而,由于缺乏稳定性和可重复使用性,其生物催化应用的发展受到严重限制。纳米结构材料由于具有较大的表面积、较高的活性和长期稳定性,已被证明是固定化酶的有效载体。此外,具有类酶特性的纳米材料被探索作为高度稳定和低成本的替代品来模拟天然存在的酶的结构和功能。本文综述了纳米结构材料和纳米酶在生物传感、生物催化、环境修复等多个领域的酶固定化研究现状,重点介绍了高选择性、高效生物催化方面存在的挑战和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
State of the art and applications in nanostructured biocatalysis
Abstract Enzymes have been widely studied for their excellent efficiency, selectivity and environmentally benign nature. However, the development of their biocatalytic applications is severely limited by the lack of stability and reusability. Nanostructured materials have been demonstrated as efficient hosts for the immobilization of enzyme due to their large surface areas as well as higher activities and long-term stability. Furthermore, nanomaterials with enzyme-like characteristics are explored as highly stable and low-cost alternatives to mimic the structures and functions of naturally occurring enzymes. This review offers an overview on the research status of enzymatic immobilization adapted from nanostructured materials and nanozymes in numerous fields, from biosensing and biocatalysis to environmental remediation, with emphasis focused on current challenges and future directions in highly selective and efficient biocatalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology & Biotechnological Equipment
Biotechnology & Biotechnological Equipment 工程技术-生物工程与应用微生物
CiteScore
3.10
自引率
0.00%
发文量
90
审稿时长
1 months
期刊介绍: Biotechnology & Biotechnological Equipment (B&BE) is an international open access journal publishing cutting-edge research. A modern world requires modern biotechnology and nanobiology. The journal is a forum that provides society with valuable information for a healthy and better life and promotes “the Science and Culture of Nature”. The journal publishes original research and reviews with a multidisciplinary perspective; expanded case reports with a focus on molecular medical research and advanced practice in evidence-based medicine are also considered.
期刊最新文献
Polymorphism in SNP G1 of the GDF9 gene associated with reproductive traits in Bulgarian dairy sheep Costs of treating type 2 diabetes mellitus and its complications A new strategy of multiplex real-time RT-qPCR assay for differentiating Omicron variants from other SARS-CoV-2 lineages Fast and precise multi-site mutagenesis on linear DNA fragments Analysis of contrast sensitivity in patients implanted with Acunex Vario and LuxSmart extended depth of focus (E-DOF) intraocular lenses (IOLs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1