{"title":"纳米结构生物催化的技术现状及其应用","authors":"Fengfan Liu, Zhihao Shi, Weike Su, Jiequn Wu","doi":"10.1080/13102818.2022.2054727","DOIUrl":null,"url":null,"abstract":"Abstract Enzymes have been widely studied for their excellent efficiency, selectivity and environmentally benign nature. However, the development of their biocatalytic applications is severely limited by the lack of stability and reusability. Nanostructured materials have been demonstrated as efficient hosts for the immobilization of enzyme due to their large surface areas as well as higher activities and long-term stability. Furthermore, nanomaterials with enzyme-like characteristics are explored as highly stable and low-cost alternatives to mimic the structures and functions of naturally occurring enzymes. This review offers an overview on the research status of enzymatic immobilization adapted from nanostructured materials and nanozymes in numerous fields, from biosensing and biocatalysis to environmental remediation, with emphasis focused on current challenges and future directions in highly selective and efficient biocatalysis.","PeriodicalId":9076,"journal":{"name":"Biotechnology & Biotechnological Equipment","volume":"36 1","pages":"118 - 134"},"PeriodicalIF":1.5000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"State of the art and applications in nanostructured biocatalysis\",\"authors\":\"Fengfan Liu, Zhihao Shi, Weike Su, Jiequn Wu\",\"doi\":\"10.1080/13102818.2022.2054727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Enzymes have been widely studied for their excellent efficiency, selectivity and environmentally benign nature. However, the development of their biocatalytic applications is severely limited by the lack of stability and reusability. Nanostructured materials have been demonstrated as efficient hosts for the immobilization of enzyme due to their large surface areas as well as higher activities and long-term stability. Furthermore, nanomaterials with enzyme-like characteristics are explored as highly stable and low-cost alternatives to mimic the structures and functions of naturally occurring enzymes. This review offers an overview on the research status of enzymatic immobilization adapted from nanostructured materials and nanozymes in numerous fields, from biosensing and biocatalysis to environmental remediation, with emphasis focused on current challenges and future directions in highly selective and efficient biocatalysis.\",\"PeriodicalId\":9076,\"journal\":{\"name\":\"Biotechnology & Biotechnological Equipment\",\"volume\":\"36 1\",\"pages\":\"118 - 134\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology & Biotechnological Equipment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/13102818.2022.2054727\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology & Biotechnological Equipment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13102818.2022.2054727","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
State of the art and applications in nanostructured biocatalysis
Abstract Enzymes have been widely studied for their excellent efficiency, selectivity and environmentally benign nature. However, the development of their biocatalytic applications is severely limited by the lack of stability and reusability. Nanostructured materials have been demonstrated as efficient hosts for the immobilization of enzyme due to their large surface areas as well as higher activities and long-term stability. Furthermore, nanomaterials with enzyme-like characteristics are explored as highly stable and low-cost alternatives to mimic the structures and functions of naturally occurring enzymes. This review offers an overview on the research status of enzymatic immobilization adapted from nanostructured materials and nanozymes in numerous fields, from biosensing and biocatalysis to environmental remediation, with emphasis focused on current challenges and future directions in highly selective and efficient biocatalysis.
期刊介绍:
Biotechnology & Biotechnological Equipment (B&BE) is an international open access journal publishing cutting-edge research. A modern world requires modern biotechnology and nanobiology. The journal is a forum that provides society with valuable information for a healthy and better life and promotes “the Science and Culture of Nature”.
The journal publishes original research and reviews with a multidisciplinary perspective; expanded case reports with a focus on molecular medical research and advanced practice in evidence-based medicine are also considered.