Hazheen K. Shirnekhi, Bappaditya Chandra, R. Kriwacki
{"title":"相分离凝聚物在融合癌蛋白驱动的癌症中的作用","authors":"Hazheen K. Shirnekhi, Bappaditya Chandra, R. Kriwacki","doi":"10.1146/annurev-cancerbio-061421-122050","DOIUrl":null,"url":null,"abstract":"Fusion oncoproteins (FOs) resulting from in-frame chromosomal translocations are associated with many aggressive cancers with poor patient outcomes. Several FOs are now understood to perform their oncogenic functions within biomolecular condensates formed through liquid-liquid phase separation (LLPS). Two classes of phase-separating FOs have emerged, those that form nuclear condensates and alter chromatin biology, including gene expression, and those that form cytoplasmic condensates and promote aberrant signaling, including RAS/MAPK signaling. The amino acid sequences of the FOs within these classes display LLPS-prone intrinsically disordered regions and folded domains that synergistically interact with themselves and other biomolecules to promote condensate formation. This review summarizes the roles of LLPS in the oncogenic functions of these two FO classes, provides examples of FOs that inhibit physiological LLPS in normal cells, and discusses the sequence features commonly associated with LLPS and their enrichment in many FOs. Expected final online publication date for the Annual Review of Cancer Biology, Volume 7 is April 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The Role of Phase-Separated Condensates in Fusion Oncoprotein–Driven Cancers\",\"authors\":\"Hazheen K. Shirnekhi, Bappaditya Chandra, R. Kriwacki\",\"doi\":\"10.1146/annurev-cancerbio-061421-122050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fusion oncoproteins (FOs) resulting from in-frame chromosomal translocations are associated with many aggressive cancers with poor patient outcomes. Several FOs are now understood to perform their oncogenic functions within biomolecular condensates formed through liquid-liquid phase separation (LLPS). Two classes of phase-separating FOs have emerged, those that form nuclear condensates and alter chromatin biology, including gene expression, and those that form cytoplasmic condensates and promote aberrant signaling, including RAS/MAPK signaling. The amino acid sequences of the FOs within these classes display LLPS-prone intrinsically disordered regions and folded domains that synergistically interact with themselves and other biomolecules to promote condensate formation. This review summarizes the roles of LLPS in the oncogenic functions of these two FO classes, provides examples of FOs that inhibit physiological LLPS in normal cells, and discusses the sequence features commonly associated with LLPS and their enrichment in many FOs. Expected final online publication date for the Annual Review of Cancer Biology, Volume 7 is April 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":54233,\"journal\":{\"name\":\"Annual Review of Cancer Biology-Series\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Cancer Biology-Series\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-cancerbio-061421-122050\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Cancer Biology-Series","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-cancerbio-061421-122050","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
The Role of Phase-Separated Condensates in Fusion Oncoprotein–Driven Cancers
Fusion oncoproteins (FOs) resulting from in-frame chromosomal translocations are associated with many aggressive cancers with poor patient outcomes. Several FOs are now understood to perform their oncogenic functions within biomolecular condensates formed through liquid-liquid phase separation (LLPS). Two classes of phase-separating FOs have emerged, those that form nuclear condensates and alter chromatin biology, including gene expression, and those that form cytoplasmic condensates and promote aberrant signaling, including RAS/MAPK signaling. The amino acid sequences of the FOs within these classes display LLPS-prone intrinsically disordered regions and folded domains that synergistically interact with themselves and other biomolecules to promote condensate formation. This review summarizes the roles of LLPS in the oncogenic functions of these two FO classes, provides examples of FOs that inhibit physiological LLPS in normal cells, and discusses the sequence features commonly associated with LLPS and their enrichment in many FOs. Expected final online publication date for the Annual Review of Cancer Biology, Volume 7 is April 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Cancer Biology offers comprehensive reviews on various topics within cancer research, covering pivotal and emerging areas in the field. As our understanding of cancer's fundamental mechanisms deepens and more findings transition into targeted clinical treatments, the journal is structured around three main themes: Cancer Cell Biology, Tumorigenesis and Cancer Progression, and Translational Cancer Science. The current volume of this journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, ensuring all articles are published under a CC BY license.