{"title":"基于内容的方形铰链损失训练卷积神经网络产品图像检索","authors":"Arif Rahman, E. Winarko, Khabis Mustofa","doi":"10.11591/ijece.v13i5.pp5804-5812","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNN) have proven to be highly effective in large-scale object detection and image classification, as well as in serving as feature extractors for content-based image retrieval. While CNN models are typically trained with category label supervision and softmax loss for product image retrieval, we propose a different approach for feature extraction using the squared-hinge loss, an alternative multiclass classification loss function. First, transfer learning is performed on a pre-trained model, followed by fine-tuning the model. Then, image features are extracted based on the fine-tuned model and indexed using the nearest-neighbor indexing technique. Experiments are conducted on VGG19, InceptionV3, MobileNetV2, and ResNet18 CNN models. The model training results indicate that training the models with squared-hinge loss reduces the loss values in each epoch and reaches stability in less epoch than softmax loss. Retrieval results show that using features from squared-hinge trained models improves the retrieval accuracy by up to 3.7% compared to features from softmax-trained models. Moreover, the squared-hinge trained MobileNetV2 features outperformed others, while the ResNet18 feature gives the advantage of having the lowest dimensionality with competitive accuracy.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Content-based product image retrieval using squared-hinge loss trained convolutional neural networks\",\"authors\":\"Arif Rahman, E. Winarko, Khabis Mustofa\",\"doi\":\"10.11591/ijece.v13i5.pp5804-5812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNN) have proven to be highly effective in large-scale object detection and image classification, as well as in serving as feature extractors for content-based image retrieval. While CNN models are typically trained with category label supervision and softmax loss for product image retrieval, we propose a different approach for feature extraction using the squared-hinge loss, an alternative multiclass classification loss function. First, transfer learning is performed on a pre-trained model, followed by fine-tuning the model. Then, image features are extracted based on the fine-tuned model and indexed using the nearest-neighbor indexing technique. Experiments are conducted on VGG19, InceptionV3, MobileNetV2, and ResNet18 CNN models. The model training results indicate that training the models with squared-hinge loss reduces the loss values in each epoch and reaches stability in less epoch than softmax loss. Retrieval results show that using features from squared-hinge trained models improves the retrieval accuracy by up to 3.7% compared to features from softmax-trained models. Moreover, the squared-hinge trained MobileNetV2 features outperformed others, while the ResNet18 feature gives the advantage of having the lowest dimensionality with competitive accuracy.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5804-5812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5804-5812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Content-based product image retrieval using squared-hinge loss trained convolutional neural networks
Convolutional neural networks (CNN) have proven to be highly effective in large-scale object detection and image classification, as well as in serving as feature extractors for content-based image retrieval. While CNN models are typically trained with category label supervision and softmax loss for product image retrieval, we propose a different approach for feature extraction using the squared-hinge loss, an alternative multiclass classification loss function. First, transfer learning is performed on a pre-trained model, followed by fine-tuning the model. Then, image features are extracted based on the fine-tuned model and indexed using the nearest-neighbor indexing technique. Experiments are conducted on VGG19, InceptionV3, MobileNetV2, and ResNet18 CNN models. The model training results indicate that training the models with squared-hinge loss reduces the loss values in each epoch and reaches stability in less epoch than softmax loss. Retrieval results show that using features from squared-hinge trained models improves the retrieval accuracy by up to 3.7% compared to features from softmax-trained models. Moreover, the squared-hinge trained MobileNetV2 features outperformed others, while the ResNet18 feature gives the advantage of having the lowest dimensionality with competitive accuracy.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]