Se Yeon Kim, Seung Il Kim, S. Yun, M. Shin, Y. Lee, Je Chul Lee
{"title":"洋葱伯克霍尔德菌产生的外膜囊泡蛋白是上皮细胞促炎反应的原因","authors":"Se Yeon Kim, Seung Il Kim, S. Yun, M. Shin, Y. Lee, Je Chul Lee","doi":"10.4167/JBV.2020.50.4.227","DOIUrl":null,"url":null,"abstract":"This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ license/by-nc/3.0/). Gram-negative bacterial pathogens produce outer membrane vesicles (OMVs) and this secreted cargo plays a role in host-pathogen interactions. OMVs isolated from Burkholderia cepacia induce the cytotoxicity and pro-inflammatory responses both in vitro and in vivo, but OMV components associated with host pathology have not been characterized. This study analyzed the proteomes of OMVs produced by B. cepacia ATCC 25416 and investigated whether proteins in B. cepacia OMVs were responsible for host pathology in vitro. Proteomic analysis revealed that a total of 265 proteins were identified in B. cepacia OMVs. Of the 265 OMV proteins, 179 (67.5%), 32 (12.1%), 27 (10.2%), 17 (6.4%), and 10 (3.8%) were predicted to be located in the cytoplasm, inner membrane, periplasmic space, outer membrane, and extracellular compartment, respectively. Several putative virulence factors were also identified in B. cepacia OMVs. B. cepacia OMVs slightly induced the cytotoxicity in lung epithelial A549 cells, but there was no difference in cytotoxic activity between intact OMVs and proteinase K-treated OMVs. B. cepacia OMVs stimulated the expression of pro-inflammatory cytokine and chemokine genes in A549 cells, but the expression of these cytokine genes was significantly inhibited in A549 cells incubated with proteinase K-treated OMVs. In conclusion, our results suggest that proteins in B. cepacia OMVs are directly responsible for pro-inflammatory responses in lung epithelial cells.","PeriodicalId":39739,"journal":{"name":"Journal of Bacteriology and Virology","volume":"50 1","pages":"227-234"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Proteins in Outer Membrane Vesicles Produced by Burkholderia cepacia are Responsible for Pro-inflammatory Responses in Epithelial Cells\",\"authors\":\"Se Yeon Kim, Seung Il Kim, S. Yun, M. Shin, Y. Lee, Je Chul Lee\",\"doi\":\"10.4167/JBV.2020.50.4.227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ license/by-nc/3.0/). Gram-negative bacterial pathogens produce outer membrane vesicles (OMVs) and this secreted cargo plays a role in host-pathogen interactions. OMVs isolated from Burkholderia cepacia induce the cytotoxicity and pro-inflammatory responses both in vitro and in vivo, but OMV components associated with host pathology have not been characterized. This study analyzed the proteomes of OMVs produced by B. cepacia ATCC 25416 and investigated whether proteins in B. cepacia OMVs were responsible for host pathology in vitro. Proteomic analysis revealed that a total of 265 proteins were identified in B. cepacia OMVs. Of the 265 OMV proteins, 179 (67.5%), 32 (12.1%), 27 (10.2%), 17 (6.4%), and 10 (3.8%) were predicted to be located in the cytoplasm, inner membrane, periplasmic space, outer membrane, and extracellular compartment, respectively. Several putative virulence factors were also identified in B. cepacia OMVs. B. cepacia OMVs slightly induced the cytotoxicity in lung epithelial A549 cells, but there was no difference in cytotoxic activity between intact OMVs and proteinase K-treated OMVs. B. cepacia OMVs stimulated the expression of pro-inflammatory cytokine and chemokine genes in A549 cells, but the expression of these cytokine genes was significantly inhibited in A549 cells incubated with proteinase K-treated OMVs. In conclusion, our results suggest that proteins in B. cepacia OMVs are directly responsible for pro-inflammatory responses in lung epithelial cells.\",\"PeriodicalId\":39739,\"journal\":{\"name\":\"Journal of Bacteriology and Virology\",\"volume\":\"50 1\",\"pages\":\"227-234\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology and Virology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4167/JBV.2020.50.4.227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology and Virology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4167/JBV.2020.50.4.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
Proteins in Outer Membrane Vesicles Produced by Burkholderia cepacia are Responsible for Pro-inflammatory Responses in Epithelial Cells
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ license/by-nc/3.0/). Gram-negative bacterial pathogens produce outer membrane vesicles (OMVs) and this secreted cargo plays a role in host-pathogen interactions. OMVs isolated from Burkholderia cepacia induce the cytotoxicity and pro-inflammatory responses both in vitro and in vivo, but OMV components associated with host pathology have not been characterized. This study analyzed the proteomes of OMVs produced by B. cepacia ATCC 25416 and investigated whether proteins in B. cepacia OMVs were responsible for host pathology in vitro. Proteomic analysis revealed that a total of 265 proteins were identified in B. cepacia OMVs. Of the 265 OMV proteins, 179 (67.5%), 32 (12.1%), 27 (10.2%), 17 (6.4%), and 10 (3.8%) were predicted to be located in the cytoplasm, inner membrane, periplasmic space, outer membrane, and extracellular compartment, respectively. Several putative virulence factors were also identified in B. cepacia OMVs. B. cepacia OMVs slightly induced the cytotoxicity in lung epithelial A549 cells, but there was no difference in cytotoxic activity between intact OMVs and proteinase K-treated OMVs. B. cepacia OMVs stimulated the expression of pro-inflammatory cytokine and chemokine genes in A549 cells, but the expression of these cytokine genes was significantly inhibited in A549 cells incubated with proteinase K-treated OMVs. In conclusion, our results suggest that proteins in B. cepacia OMVs are directly responsible for pro-inflammatory responses in lung epithelial cells.